Infections caused by eukaryotic organisms, such as fungi, are generally more difficult to treat than bacterial infections. With the widespread use of antifungal drugs in humans and plants, resistance and toxicity have emerged. Therefore, it is desirable to develop new antifungal drugs with low toxicity that are not susceptible to the development of resistance. This review presents a summary of the past few years (2017-2021) of research on heterocyclic compounds as antifungal agents for use in humans and plants, focusing on the structure-activity relationships (SAR) of these compounds. This review may provide ideas and information for designing and developing new antifungal drugs with fewer side effects compared with currently available drugs.
Background: TGF-β signaling pathway inhibition is considered an effective way to prevent the development of several diseases. In the design and synthesis of TGF-β inhibitors, a rhodanine compound containing a quinoxalinyl imidazole moiety was found to have strong antimicrobial activity. Objective: The purpose of this work was to investigate the antimicrobial activity of other chiral rhodanine TGF-β inhibitors synthesized. Methods: Two series of 3-substituted-5-((5-(6-methylpyridin-2-yl)-4-(quinoxalinyl-6-yl)- 1H-imidazol-2-yl)methylene)-2-thioxothiazolin-4-ones (12a–h and 13a–e) were synthesized and evaluated for their ALK5 inhibitory and antimicrobial activity. The structures were confirmed by their 1H NMR, 13C NMR, and HRMS spectra. All the synthesized compounds were screened against Gram-positive strains, Gram-negative strains, and fungi. Results: Among the synthesized compounds, compound 12h showed the highest activity (IC50 = 0.416 μM) against ALK5 kinase. Compound 12h exhibited a good selectivity index of > 24 against p38α MAP kinase and was 6.0-fold more selective than the clinical candidate, compound 2 (LY-2157299). Nearly all the compounds displayed high selectivity toward both Gram-positive and Gram-negative bacteria. They also showed similar or 2.0-fold greater antifungal activity (minimum inhibitory concentration [MIC] = 0.5 µg/mL) compared with the positive control compounds Gatifloxacin (MIC = 0.5 µg/mL) and fluconazole (MIC = 1 µg/mL). Conclusion: The findings suggest that the synthesized rhodanine compounds have good ALK5 inhibitory activity and can be used for further research and development as potential antifungal drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.