As the unscented Kalman filtering algorithm is sensitive to the battery model and susceptible to the uncertain noise interference, an improved iterate calculation method is proposed to improve the charged state prediction accuracy of the lithium ion battery packs by introducing a novel splice Kalman filtering algorithm with adaptive robust performance. The battery is modeled by composite equivalent modeling and its parameters are identified effectively by investigating the hybrid power pulse test. The sensitivity analysis is carried out for the model parameters to obtain the influence degree on the prediction effect of different factors, providing a basis of the adaptive battery characterization. Subsequently, its implementation process is carried out including model building and adaptive noise correction that are perceived by the iterate charged state calculation. Its experimental results are analyzed and compared with other algorithms through the physical tests. The polarization resistance is obtained as Rp = 16.66 mΩ and capacitance is identified as Cp=13.71 kF. The ohm internal resistance is calculated as Ro = 68.71 mΩ and the charged state has a prediction error of 1.38% with good robustness effect, providing a foundational basis of the power prediction for the lithium ion battery packs.
Diabetic retinopathy (DR) is an eye abnormality caused by long-term diabetes and it is the most common cause of blindness before the age of 50. Microaneurysms (MAs), resulting from leakage from retinal blood vessels, are early indicators of DR. In this paper, we analyzed MA detectability using small 25 by 25 pixel patches extracted from fundus images in the DIAbetic RETinopathy DataBase - Calibration Level 1 (DIARETDB1). Raw pixel intensities of extracted patches served directly as inputs into the following classifiers: random forest (RF), neural network, and support vector machine. We also explored the use of two techniques (principal component analysis and RF feature importance) for reducing input dimensionality. With traditional machine learning methods and leave-10-patients-out cross validation, our method outperformed a deep learning-based MA detection method, with AUC performance improved from 0.962 to 0.985 and F-measure improved from 0.913 to 0.926, using the same DIARETDB1 database. Furthermore, we validated our method on a different dataset-retinopathy online challenge (ROC) data set. The performance of the three classifiers and the pattern with different percentage of principal components are consistent on the two data sets. Especially, we trained the RF on DIARETDB1 and applied it to ROC; the performance is very similar to that of the RF trained and tested using cross validation on ROC data set. This result indicates that our method has the potential to generalize to different datasets.
(1) The contents of different Mandarin running speeches may not affect the acceptable noise level in Mandarin normal-hearing listeners; (2) The running speech selected from the primary school ought to be used as the Mandarin acceptable noise level test material to evaluate the outcomes of hearing aid fitting.
Accurate prediction of the state of health (SOH) of Li-ion battery has an important role in the estimation of battery state of charge (SOC), which can not only improve the efficiency of battery usage but also ensure its safety performance.The battery capacity will decrease with the increase of charge and discharge times, while the internal resistance will become larger, which will affect battery management. The capacity attenuation characteristics of Li-ion batteries are analyzed by aging experiment. Based on the equivalent circuit model and online parameter identification, a novel adaptive dual extended Kalman filter algorithm is proposed to consider the influence of the battery SOH on the estimation of the battery SOC, and the SOC and SOH of the Li-ion battery are estimated collaboratively. The feasibility and accuracy of the model and algorithm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.