Observations made during the historic 2005 hurricane season document a case of "eyewall replacement." Clouds outside the hurricane eyewall coalesce to form a new eyewall at a greater radius from the storm center, and the old eyewall dies. The winds in the new eyewall are initially weaker than those in the original eyewall, but as the new eyewall contracts, the storm reintensifies. Understanding this replacement mechanism is vital to forecasting variations in hurricane intensity. Processes in the "moat" region between the new and old eyewall have been particularly unclear. Aircraft data now show that the moat becomes dynamically similar to the eye and thus is converted into a region inimical to survival of the inner eyewall. We suggest that targeting aircraft to key parts of the storm to gain crucial input to high-resolution numerical models can lead to improvements in forecasting hurricane intensity.
The field campaign, involving multiple aircraft and ground-based instruments, documented numerous long-lived mesoscale convective systems, many producing strong surface winds and exhibiting mesoscale rotation.
This study investigates a long-duration mesoscale system with extremely heavy rainfall over southwest Taiwan during the Terrain-influenced Monsoon Rainfall Experiment (TiMREX). This mesoscale convective system develops offshore and stays quasi-stationary over the upstream ocean and southwest coast of Taiwan. New convection keeps developing upstream offshore but decays or dies after moving into the island, dropping the heaviest rain over the upstream ocean and coastal regions. Warm, moist, unstable conditions and a lowlevel jet (LLJ) are found only over the upstream ocean, while the island of Taiwan is under the control of a weak cold pool. The LLJ is lifted upward at the boundary between the cold pool and LLJ. Most convective clusters supporting the long-lived rainy mesoscale system are initiated and develop along that boundary. The initiation and maintenance is thought to be a ''back-building-quasi-stationary'' process. The cold pool forms from previous persistent precipitation with a temperature depression of 28-48C in the lowest 500 m, while the high terrain in Taiwan is thought to trap the cold pool from spreading or moving. As a result, the orography of Taiwan is ''extended'' to the upstream ocean and plays an indirect effect on the long-duration mesoscale system.
Airborne Doppler radar captured the inner core of Hurricane Earl during the early stages of secondary eyewall formation (SEF), providing needed insight into the SEF dynamics. An organized rainband complex outside of the primary eyewall transitioned into an axisymmetric secondary eyewall containing a low-level tangential wind maximum. During this transition, the downshear-left quadrant of the storm exhibited several notable features. A mesoscale descending inflow (MDI) jet persistently occurred across broad stretches of stratiform precipitation in a pattern similar to previous studies. This negatively buoyant jet traveled radially inward and descended into the boundary layer. Farther inward, enhanced low-level inflow and intense updrafts appeared. The updraft adjacent to the MDI was likely triggered by a region of convergence and upward acceleration (induced by the negatively buoyant MDI) entering the high-θe boundary layer. This updraft and the MDI in the downshear-left quadrant accelerated the tangential winds in a radial range where the axisymmetric wind maximum of the secondary eyewall soon developed. This same quadrant eventually exhibited the strongest overturning circulation and wind maximum of the forming secondary eyewall. Given these features occurring in succession in the downshear-left quadrant, we hypothesize that the MDI plays a significant dynamical role in SEF. The MDI within a mature rainband complex persistently perturbs the boundary layer, which locally forces enhanced convection and tangential winds. These perturbations provide steady low-level forcing that projects strongly onto the axisymmetric field, and forges the way for secondary eyewall development via one of several SEF theories that invoke axisymmetric dynamical processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.