This paper presents a three-dimensional finite deformation theory for the geometric nonlinear analysis of both the curved and twisted beams using the meshfree method based on the Timoshenko beam hypothesis. The theory presented is simple, but it is capable of solving the stability, postbuckling, snap-through, and large deformation problems effectively. Clear physical meanings will be revealed in derivation of the three-dimensional finite deformation theory. A meshfree method based on the differential reproducing kernel (DRK) approximation collocation method combined with the Newton–Raphson method is employed to solve the strong forms of the geometrically nonlinear problems. Numerical examples are given to illustrate the validity of the method presented.
The main contributing factor of the urban heat island (UHI) effect is caused by daytime heating. Traditional pavements in cities aggravate the UHI effect due to their heat storage and volumetric heat capacity. In order to alleviate UHI, this study aims to understand the heating and dissipating process of different types of permeable road pavements. The Ke Da Road in Pingtung County of Taiwan has a permeable pavement materials experiment zone with two different section configurations which were named as section I and section II for semi-permeable pavement and fully permeable pavement, respectively. The temperature sensors were installed during construction at the depths of the surface course (0 cm and 5 cm), base course (30 cm and 55 cm) and subgrade (70 cm) to monitor the temperature variations in the permeable road pavements. Hourly temperature and weather station data in January and June 2017 were collected for analysis. Based on these collected data, heat storage and dissipation efficiencies with respect to depth have been modelled by using multi regression for the two studied pavement types. It is found that the fully permeable pavement has higher heat storage and heat dissipation efficiencies than semi-permeable pavement in winter and summer monitoring period. By observing the regressed model, it is found that the slope of the model lines are almost flat after the depth of 30 cm. Thus, from the view point of UHI, one can conclude that the reasonable design depth of permeable road pavement could be 30 cm.
This paper presents a co-rotational beam formulation, which is used for geometric nonlinear analysis with the differential reproducing kernel (DRK) approximation collocation method. The present formulation, based on the Timoshenko beam hypothesis, is capable of effectively solving geometrically nonlinear problems such as large deformation, postbuckling, lateral buckling, and snap-through problems. The kinematics have been constructed with the concept of co-rotational formulation adopted in the finite element method (FEM). A meshfree method based on the differential reproducing kernel (DRK) approximation collocation method, combined with the Newton–Raphson method, is employed to solve the strong forms of the geometrically nonlinear problems. The DRK method takes full advantage of the meshfree method. Moreover, only a scattered set of nodal points is necessary for the discretization. No elements or mesh connectivity data are required. Therefore, DRK will be able to completely circumvent the problems of mesh dependence and mesh distortion. The effectiveness of this study and its performance are shown through several numerical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.