Development of effective disease-resistance to a broad-range of pathogens in crops usually requires tremendous resources and effort when traditional breeding approaches are taken. Genetic engineering of disease-resistance in crops has become popular and valuable in terms of cost and efficacy. Due to long-lasting and broad-spectrum of effectiveness against pathogens, employment of systemic acquired resistance (SAR) for the genetic engineering of crop disease-resistance is of particular interest. In this report, we explored the potential of using SAR-related genes for the genetic engineering of enhanced resistance to multiple diseases in tomato. The Arabidopsis NPR1 (nonexpresser of PR genes) gene was introduced into a tomato cultivar, which possesses heat-tolerance and resistance to tomato mosaic virus (ToMV). The transgenic lines expressing NPR1 were normal as regards overall morphology and horticultural traits for at least four generations. Disease screens against eight important tropical diseases revealed that, in addition to the innate ToMV-resistance, the tested transgenic lines conferred significant level of enhanced resistance to bacterial wilt (BW) and Fusarium wilt (FW), and moderate degree of enhanced resistance to gray leaf spot (GLS) and bacterial spot (BS). Transgenic lines that accumulated higher levels of NPR1 proteins exhibited higher levels and a broader spectrum of enhanced resistance to the diseases, and enhanced disease-resistance was stably inherited. The spectrum and degree of these NPR1-transgenic lines are more significant compared to that of transgenic tomatoes reported to date. These transgenic lines may be further explored as future tomato stocks, aiming at building up resistance to a broader spectrum of diseases.
A gene encoding the rice 16.9-kDa class I low-molecular-mass (LMM) heat-shock protein (HSP), Oshsp16.9, was introduced into Escherichia coli using the
Polyamines are organic polycations essential for cell growth and differentiation; their aberrant accumulation is often associated with diseases, including many types of cancer. To maintain polyamine homeostasis, the catalytic activity and protein abundance of ornithine decarboxylase (ODC), the committed enzyme for polyamine biosynthesis, are reciprocally controlled by the regulatory proteins antizyme isoform 1 (Az 1 ) and antizyme inhibitor (AzIN). Az 1 suppresses polyamine production by inhibiting the assembly of the functional ODC homodimer and, most uniquely, by targeting ODC for ubiquitin-independent proteolytic destruction by the 26S proteasome. In contrast, AzIN positively regulates polyamine levels by competing with ODC for Az 1 binding. The structural basis of the Az 1 -mediated regulation of polyamine homeostasis has remained elusive. Here we report crystal structures of human Az 1 complexed with either ODC or AzIN. Structural analysis revealed that Az 1 sterically blocks ODC homodimerization. Moreover, Az 1 binding triggers ODC degradation by inducing the exposure of a cryptic proteasome-interacting surface of ODC, which illustrates how a substrate protein may be primed upon association with Az 1 for ubiquitin-independent proteasome recognition. Dynamic and functional analyses further indicated that the Az 1 -induced binding and degradation of ODC by proteasome can be decoupled, with the intrinsically disordered C-terminal tail fragment of ODC being required only for degradation but not binding. Finally, the AzIN-Az 1 structure suggests how AzIN may effectively compete with ODC for Az 1 to restore polyamine production. Taken together, our findings offer structural insights into the Az-mediated regulation of polyamine homeostasis and proteasomal degradation.polyamine homeostasis | ornithine decarboxylase | antizyme | antizyme inhibitor | ubiquitin-independent proteolysis P olyamines are multivalent organic cations that are ubiquitous and essential in eukaryotes (1). With their polycationic characteristics, these compounds are known to modulate the structural and functional properties of nucleic acids and proteins via electrostatic interactions, in turn affecting cell growth and differentiation by influencing the underlying cellular processes (1, 2). Consistent with their crucial regulatory roles, fluctuations in intracellular polyamine levels are rigorously controlled during cell growth and differentiation via fine-tuning the balance between the biosynthesis, degradation, and uptake of polyamines. Aberrant accumulation of polyamines is associated with pathological consequences, including many types of cancer (3-5).Regulation of polyamine homeostasis is achieved mainly by adjusting the catalytic activity and protein abundance of ornithine decarboxylase (ODC), a homodimeric and pyridoxal 5ʹ-phosphatedependent enzyme that catalyzes the committed and rate-limiting step in polyamine biosynthesis, through the actions of the regulatory proteins antizyme isoform 1 (Az 1 ) and antizyme inhibitor (AzIN) (3, 6). E...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.