The effects of cobalt oxide addition on the microstructure and electrical properties of CuZn ferrites were investigated. CuZn ferrites with compositions of (CuO)0.2(ZnO)0.8(Co3O4)x/3 (Fe2O3) 0.986-2x; x = 0 , 0.02, 0.04, 0.08, 0.1 were synthesized using a solid state reaction. It was observed that the addition of cobalt will change the amounts and distribution of Cu2+, Cu+, Fe2+, and Fe3+ in the grain and grain boundary. The segregation of copper ions at the grain boundary was observed as the substitution of cobalt was increased. Moreover, as the x value was increased above 0.04, second phases of CuO and ZnO were found. The different amounts and distribution of Cu2+, Cu+, Fe2+, and Fe3+ in the bulk and grain boundary for samples added with different amounts of cobalt changed the conductivity activation energies of the bulk and grain boundary, and hence affected the space polarization and dielectric properties.
This research is aimed toward an understanding of the effects of the chemical characteristics and mineral compositions of sandstone and formation water based on saline water-rock-supercritical CO 2 interaction simulation experiments. These experiments were conducted to assess whether toxic trace elements could be dissolved and released in formation water from sandstone in a CO 2 storage layer after CO 2 geological sequestration, thus affecting groundwater quality. The experimental results reveal that the concentrations of Cd and Pb in the water under examination exceeded the national primary drinking standard as a result of saline/fresh water-rock-supercritical CO 2 interactions after 40 d of sandstone immersion in saline/fresh water and 20 d of interaction. In addition, the Mn concentration in the saline/fresh water exceeded the national secondary drinking standard after 40 d of sandstone immersion and 20-80 d of interaction. However, Cd, Pb, and Mn were released to a greater extent (in terms of concentration, 2-fold for Cd, 7-fold for Pb, and 1.7-fold for Mn) in the presence of salinity, revealing that salinity may enhance the dissolution of Cd, Pb, and Mn after 20 d of saline water-rock-scCO 2 interaction. After a long period of supercritical CO 2 -sandstone interaction, the trace metals previously mobilized can be immobilized again by an increase in alkalinity due to aragonite dissolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.