Danggui Buxue Tang (DBT) is a herbal decoction that has been used in Chinese medicine to enhance qi and blood circulation. Previously, we found that DBT can suppress allergy-related asthma in mice, leading us to hypothesize that DBT might ameliorate allergy disease. In this study, we evaluated whether DBT can attenuate atopic dermatitis (AD) symptoms and have an anti-inflammatory effect on AD-like mice. The dorsal skin of female mice was shaved and sensitized cutaneously (skin smear) with 1-chloro-2,4-dinitrobenzene. Mice were then given various doses of DBT from days 14 to 29 cutaneously. DBT treatment suppressed ear swelling and skin inflammation and decreased mast cell and eosinophil infiltration into skin and ear tissue. DBT also inhibited levels of IgE and Th2-associated cytokine levels in serum. These results demonstrate that cutaneous administration of DBT reduced the development of AD-like skin lesions in mice.
The purpose of this study was to investigate the effects of whole body vibration (WBV) exercise with and without blood flow restriction (BFR) on electromyography (EMG) amplitude and hormonal responses. Eight healthy male adults who lacked physical activity participated in this study and completed 10 sets of WBV and WBV + BFR sessions in a repeated measures crossover design. In the WBV + BFR session, the participants wore a BFR device inflated to 140 mmHg around the proximal region of the thigh muscles. The results indicated that the EMG values from the rectus femoris and vastus lateralis during the WBV + BFR session were significantly higher than those during the WBV session (p < 0.05). Two-way analysis of variance with repeated measures showed that the WBV + BFR and WBV exercise sessions induced a significant (simple main effect for time) increase in lactate (LA) (0.61–4.68 vs. 0.46–3.44 mmol/L) and growth hormone (GH) (0.48–3.85 vs. 0.47–0.82 ng/mL) responses after some of the post-exercise time points (p < 0.05). WBV + BFR elicited significantly higher LA and GH (simple main effect for trial) responses than did WBV after exercise (p < 0.05). Although no significant time × trial interactions were observed for testosterone (T) (604.5–677.75 vs. 545.75–593.88 ng/dL), main effects for trial (p < 0.05) and for time (p < 0.05) were observed. In conclusion, WBV + BFR produced an additive effect of exercise on EMG amplitude and LA and GH responses, but it did not further induce T responses compared to those with WBV alone.
Position therapy plays a role in treating snoring and obstructive sleep apnea syndrome (OSAS). The purpose of this study was to investigate whether position therapy using a head-positioning pillow (HPP) could reduce snoring sounds in patients with mild-to-moderate positional OSAS, taking into account the potential confounding effects of body weight. A total of 25 adults with positional OSAS (apnea-hypopnea index [AHI]supine:AHInon-supine ≥ 2) were prospectively enrolled. Patients were asked to use their own pillows at home during the first night (N0), and the HPP during the second (N1) and third (N2) nights. The primary outcome measures included the subjective snoring severity (SS, measured on a visual analogue scale ranging from 0 to 10) and the objective snoring index (SI, expressed as the number of snoring events per hour measured on an acoustic analytical program). Both endpoints were recorded over three consecutive nights. From N0 to N2, the median SS and SI values in the entire study cohort decreased significantly from 5.0 to 4.0 and from 218.0 events/h to 115.0 events/h, respectively. In the subgroup of overweight patients, SS showed a significant improvement, whereas SI did not. Both SS and SI were found to be significantly improved in normal-weight patients.
Dehydroepiandrosterone (DHEA), the most abundant sex steroid, is primarily secreted by the adrenal gland and a precursor hormone used by athletes for performance enhancement. Whole-body vibration (WBV) is a well-known light-resistance exercise by automatic adaptations to rapid and repeated oscillations from a vibrating platform, which is also a simple and convenient exercise for older adults. However, the potential effects of DHEA supplementation combined with WBV training on to body composition, exercise performance, and hormone regulation are currently unclear. The objective of the study is to investigate the effects of DHEA supplementation combined with WBV training on body composition, exercise performance, and physical fatigue-related biochemical responses and testosterone content in young-adult C57BL/6 mice. In this study, male C57BL/6 mice were divided into four groups (n = 8 per group) for 6-weeks treatment: sedentary controls with vehicle (SC), DHEA supplementation (DHEA, 10.2 mg/kg), WBV training (WBV; 5.6 Hz, 2 mm, 0.13 g), and WBV training with DHEA supplementation (WBV+DHEA; WBV: 5.6 Hz, 2 mm, 0.13 g and DHEA: 10.2 mg/kg). Exercise performance was evaluated by forelimb grip strength and exhaustive swimming time, as well as changes in body composition and anti-fatigue levels of serum lactate, ammonia, glucose, creatine kinase (CK), and blood urea nitrogen (BUN) after a 15-min swimming exercise. In addition, the biochemical parameters and the testosterone content were measured at the end of the experiment. Six-week DHEA supplementation alone significantly increased mice body weight (BW), muscle weight, testosterone level, and glycogen contents (liver and muscle) when compared with SC group. DHEA supplementation alone had no negative impact on all tissue and biochemical profiles, but could not improve exercise performance. However, WBV+DHEA supplementation also significantly decreased BW, testosterone level and glycogen content of liver, as well as serum lactate and ammonia levels after the 15-min swimming exercise when compared with DHEA supplementation alone. Although DHEA supplementation alone had no beneficial effect in the exercise performance of mice, the BW, testosterone level and glycogen content significantly increased. On the other hand, WBV training combined with DHEA decreased the BW gain, testosterone level and glycogen content caused by DHEA supplementation. Therefore, WBV training could inhibit DHEA supplementation to synthesis the testosterone level or may decrease the DHEA supplement absorptive capacity in young-adult mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.