Herein, mixed–metal nanocomposite catalysts with various compositions (CoFe2O4/xFe2O3; x = 0, 0.25, 0.50, 0.75 and 1) were successfully fabricated by a co–precipitation method. The composition and morphology of the catalyst were systematically characterized. The catalyst with the highest Co content (CoFe2O4), exhibited the greatest efficiency for the acid orange 7 (AO7) degradation via peroxymonosulfate (PMS) activation. The effects of several experimental parameters including pH, CoFe2O4 loading, and PMS dosage on AO7 degradation were studied, and the catalytic activity was found to increase with the mentioned parameters. Moreover, CoFe2O4 displayed adequate reusability and was able to degrade AO7 for at least four consecutive cycles. In addition, the total organic carbon (TOC) removal of CoFe2O4 was determined while the catalyst stability was observed from the metal leaching in the treated solution. Furthermore, the magnetism of CoFe2O4 provides facile separation of the catalyst from the treated solution. Sulfate radicals (SO4•–) were identified as the main reactive species responsible for AO7 degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.