Women on hemodialysis had more depression-related symptoms and poor self-reported HRQoL, but better survival than men. The sex difference in psychological and HRQoL issues deserves greater concern because this relates to clinical care and further study.
The NEP-AKI-D study enrols a large number of representative AKI patients throughout Taiwan. The results of the current study are expected to provide more insight into the risk and prognostic factors of AKI and further attenuated further chronic kidney disease transition.
Chest pain is a common complaint in the emergency department, but this may prevent a diagnosis of major adverse cardiac events, a composite of all-cause mortality associated with cardiovascular-related illnesses. To determine potential predictors of major adverse cardiac events in Taiwan, a pilot study was performed, involving the data from 268 patients with major adverse cardiac events, which was by an artificial neural network method. Nine biomarkers were selected for identifying non-ST-elevation myocardial infarction from common chest pain patients. By using a machine learningbased feature selection technique, five biomarkers were chosen from a set of 37 candidate variables. A full and a reduced risk stratification model were built. The full model was based on the characteristics of both invasive (i.e., creatinine and troponin I) and non-invasive (i.e., age, coronary artery disease risk factors, and corrected QT interval) variables, and the reduced model was based only on non-invasive variable characteristics. The full model showed a sensitivity of 0.948 and a specificity of 0.546 when the cutoff was set at 2 points, with a missed major adverse cardiac events rate of 1.32%, a positive predictive value of 0.228, and a negative predictive value of 0.987. High performance was also obtained with the five major biomarkers in the predictor built by the machine learning algorithm. The full model had the highest performance, but the reduced model can be applied as a quick and reasonably performing diagnostic tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.