The sense of one’s own body is a pillar of self-consciousness and could be investigated by inducing human illusions of artificial objects as part of the self. Here, we present a nonhuman primate version of a rubber-hand illusion that allowed us to determine its computational and neuronal mechanisms. We implemented a video-based system in a reaching task in monkeys and combined a casual inference model to establish an objective and quantitative signature for the monkey’s body representation. Similar to humans, monkeys were more likely to perceive an external object as part of the self when the dynamics (spatial disparity) and the features (shape and structure) of visual (V) input was closer to proprioceptive (P) signals. Neural signals in the monkey’s premotor cortex reflected the strength of illusion and the likelihood of misattributing the illusory hand to oneself, thus, revealing a cortical representation of body ownership.
Memory for spatial sequences does not depend solely on the number of locations to be stored, but also on the presence of spatial regularities. Here, we show that the human brain quickly stores spatial sequences by detecting geometrical regularities at multiple time scales and encoding them in a format akin to a programming language. We measured gaze-anticipation behavior while spatial sequences of variable regularity were repeated. Participants' behavior suggested that they quickly discovered the most compact description of each sequence in a language comprising nested rules, and used these rules to compress the sequence in memory and predict the next items. Activity in dorsal inferior prefrontal cortex correlated with the amount of compression, while right dorsolateral prefrontal cortex encoded the presence of embedded structures. Sequence learning was accompanied by a progressive differentiation of multi-voxel activity patterns in these regions. We propose that humans are endowed with a simple "language of geometry" which recruits a dorsal prefrontal circuit for geometrical rules, distinct from but close to areas involved in natural language processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.