SummaryIntercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering 'sustainable intensification'. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and speciesfor example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above-and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.
Summary1. The storage of carbon (C) and nitrogen (N) in soil is important ecosystem functions. Grassland biodiversity experiments have shown a positive effect of plant diversity on soil C and N storage. However, these experiments all included legumes, which constitute an important N input through N 2 -fixation. Indeed, the results of these experiments suggest that N 2 fixation by legumes is a major driver of soil C and N storage. 2. We studied whether plant diversity affects soil C and N storage in the absence of legumes. In an 11-year grassland biodiversity experiment without legumes, we measured soil C and N stocks. We further determined above-ground biomass productivity, standing root biomass, soil organic matter decomposition and N mineralization rates to understand the mechanisms underlying the change in soil C and N stocks in relation to plant diversity and their feedbacks to plant productivity. 3. We found that soil C and N stocks increased by 18% and 16% in eight-species mixtures compared to the average of monocultures of the same species, respectively. Increased soil C and N stocks were mainly driven by increased C input and N retention, resulting from enhanced plant productivity, which surpassed enhanced C loss from decomposition. Importantly, higher soil C and N stocks were associated with enhanced soil N mineralization rates, which can explain the strengthening of the positive diversity-productivity relationship observed in the last years of the experiment. 4. Synthesis. We demonstrated that also in the absence of legumes, plant species richness promotes soil carbon (C) and nitrogen (N) stocks via increased plant productivity. In turn, enhanced soil C and N stocks showed a positive feedback to plant productivity via enhanced N mineralization, which could further accelerate soil C and N storage in the long term.
Intercropping, the simultaneous cultivation of multiple crop species in a single field, increases aboveground productivity due to species complementarity. We hypothesized that intercrops may have greater belowground productivity than sole crops, and sequester more soil carbon over time due to greater input of root litter. Here, we demonstrate a divergence in soil organic carbon (C) and nitrogen (N) content over 7 years in a field experiment that compared rotational strip intercrop systems and ordinary crop rotations. Soil organic C content in the top 20 cm was 4% ± 1% greater in intercrops than in sole crops, indicating a difference in C sequestration rate between intercrop and sole crop systems of 184 ± 86 kg C ha(-1) yr(-1). Soil organic N content in the top 20 cm was 11% ± 1% greater in intercrops than in sole crops, indicating a difference in N sequestration rate between intercrop and sole crop systems of 45 ± 10 kg N ha(-1) yr(-1). Total root biomass in intercrops was on average 23% greater than the average root biomass in sole crops, providing a possible mechanism for the observed divergence in soil C sequestration between sole crop and intercrop systems. A lowering of the soil δ(15) N signature suggested that increased biological N fixation and/or reduced gaseous N losses contributed to the increases in soil N in intercrop rotations with faba bean. Increases in soil N in wheat/maize intercrop pointed to contributions from a broader suite of mechanisms for N retention, e.g., complementary N uptake strategies of the intercropped plant species. Our results indicate that soil C sequestration potential of strip intercropping is similar in magnitude to that of currently recommended management practises to conserve organic matter in soil. Intercropping can contribute to multiple agroecosystem services by increased yield, better soil quality and soil C sequestration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.