BackgroundA deep learning computer artificial intelligence system is helpful for early identification of ground glass opacities (GGOs).MethodsImages from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) database were used in AlexNet and GoogLeNet to detect pulmonary nodules, and 221 GGO images provided by Xinhua Hospital were used in ResNet50 for detecting GGOs. We used computed tomography image radial reorganization to create the input image of the three-dimensional features, and used the extracted features for deep learning, network training, testing, and analysis.ResultsIn the final evaluation results, we found that the accuracy of identification of lung nodule could reach 88.0%, with an F-score of 0.891. In terms of performance and accuracy, our method was better than the existing solutions. The GGO nodule classification achieved the best F-score of 0.87805. We propose a preprocessing method of red, green, and blue (RGB) superposition in the region of interest to effectively increase the differentiation between nodules and normal tissues, and that is the innovation of our research.ConclusionsThe method of deep learning proposed in this study is more sensitive than other systems in recent years, and the average false positive is lower than that of others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.