Background Segmental duplications at breakpoints (BP4–BP5) of chromosome 15q13.2q13.3 mediate a recurrent genomic imbalance syndrome associated with mental retardation, epilepsy, and/or EEG abnormalities. Patients DNA samples from 1,445 unrelated patients submitted consecutively for clinical array comparative genomic hybridisation (CGH) testing at Children’s Hospital Boston and DNA samples from 1,441 individuals with Autism from 751 families in the Autism Genetic Resource Exchange (AGRE) repository. Results We report the clinical features of five patients with a BP4-BP5 deletion, three with a BP4–BP5 duplication, and two with an overlapping but smaller duplication identified by whole genome high resolution oligonucleotide array CGH. These BP4–BP5 deletion cases exhibit minor dysmorphic features, significant expressive language deficits, and a spectrum of neuropsychiatric impairments that include autism spectrum disorder, ADHD, anxiety disorder, and mood disorder. Cognitive impairment varied from moderate mental retardation to normal IQ with learning disability. BP4–BP5 covers ~1.5Mb (chr15:28.719–30.298Mb) and includes 6 reference genes and 1 miRNA gene, while the smaller duplications cover ~500 kb (chr15:28.902–29.404 Mb) and contain 3 reference genes and one miRNA gene. The BP4–BP5 deletion and duplication events span CHRNA7, a candidate gene for seizures. However, none of these individuals reported here have epilepsy, although two have an abnormal EEG. Conclusions The phenotype of chromosome 15q13.2q13.3 BP4–BP5 microdeletion/duplication syndrome may include features of autism spectrum disorder, a variety of neuropsychiatric disorders, and cognitive impairment. Recognition of this broader phenotype has implications for clinical diagnostic testing and efforts to understand the underlying etiology of this syndrome.
Research has implicated mutations in the gene for neurexin-1 (NRXN1) in a variety of conditions including autism, schizophrenia, and nicotine dependence. To our knowledge, there have been no published reports describing the breadth of the phenotype associated with mutations in NRXN1. We present a medical record review of subjects with deletions involving exonic sequences of NRXN1. We ascertained cases from 3,540 individuals referred clinically for comparative genomic hybridization testing from March 2007 to January 2009. Twelve subjects were identified with exonic deletions. The phenotype of individuals with NRXN1 deletion is variable and includes autism spectrum disorders, mental retardation, language delays, and hypotonia. There was a statistically significant increase in NRXN1 deletion in our clinical sample compared to control populations described in the literature (P = 8.9 × 10−7). Three additional subjects with NRXN1 deletions and autism were identified through the Homozygosity Mapping Collaborative for Autism, and this deletion segregated with the phenotype. Our study indicates that deletions of NRXN1 predispose to a wide spectrum of developmental disorders. © 2010 Wiley-Liss, Inc.
Background We aimed for a comprehensive delineation of genetic, functional and phenotypic aspects of GRIN2B encephalopathy and explored potential prospects of personalised medicine. Methods Data of 48 individuals with de novo GRIN2B variants were collected from several diagnostic and research cohorts, as well as from 43 patients from the literature. Functional consequences and response to memantine treatment were investigated in vitro and eventually translated into patient care. Results Overall, de novo variants in 86 patients were classified as pathogenic/likely pathogenic. Patients presented with neurodevelopmental disorders and a spectrum of hypotonia, movement disorder, cortical visual impairment, cerebral volume loss and epilepsy. Six patients presented with a consistent malformation of cortical development (MCD) intermediate between tubulinopathies and polymicrogyria. Missense variants cluster in transmembrane segments and ligand-binding sites. Functional consequences of variants were diverse, revealing various potential gain-of-function and loss-of-function mechanisms and a retained sensitivity to the use-dependent blocker memantine. However, an objectifiable beneficial treatment response in the respective patients still remains to be demonstrated. Conclusions In addition to previously known features of intellectual disability, epilepsy and autism, we found evidence that GRIN2B encephalopathy is also frequently associated with movement disorder, cortical visual impairment and MCD revealing novel phenotypic consequences of channelopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.