Clinical manifestations of COVID-19 caused by the new coronavirus SARS-CoV-2 are associated with age 1,2. Adults develop respiratory symptoms, which can progress to acute respiratory distress syndrome (ARDS) in the most severe form, while children are largely spared from respiratory illness but can develop a life-threatening multisystem inflammatory syndrome (MIS-C) 3-5. Here, we show distinct antibody responses in children and adults after SARS-CoV-2 infection. Adult COVID-19 cohorts had anti-spike (S) IgG, IgM and IgA antibodies, as well as anti-nucleocapsid (N) IgG antibody, while children with and without MIS-C had reduced breadth of anti-SARS-CoV-2-specific antibodies, predominantly generating IgG antibodies specific for the S protein but not the N protein. Moreover, children with and without MIS-C had reduced neutralizing activity as compared to both adult COVID-19 cohorts, indicating a reduced protective serological response. These results suggest a distinct infection course and immune response in children independent of whether they develop MIS-C, with implications for developing age-targeted strategies for testing and protecting the population. The clinical manifestations of SARS-CoV-2 infection in children are distinct from adults. Children with COVID-19 rarely exhibit severe respiratory symptoms and often remain asymptomatic 2 , whereas adults experience respiratory symptoms of varying severity; older adults and those with comorbidities such as hypertension and diabetes have substantially higher risks of developing COVID-19-associated ARDS with high mortality 2,6. In children, a rare but severe clinical manifestation of SARS-CoV-2 infection designated MIS-C, exhibits similarities to Kawasaki disease in certain inflammatory features and cardiovascular involvement while generally lacking severe respiratory symptoms 3-5. The nature of the immune response to SARS-CoV-2 in children with different clinical manifestations ranging from asymptomatic to MIS-C relative to the more common respiratory manifestations of COVID-19 in adults is unclear. The generation of virus-specific antibodies that neutralize or block infectivity is the most consistent correlate of protective immunity for multiple infections and vaccines 7,8. Antibodies specific for the major SARS-CoV-2 antigens, including the S protein which binds the cellular receptor for viral entry and the N protein necessary for viral replication, have been detected in actively infected patients and in patients with mild disease who recovered 9-12. Anti-S antibodies, in particular, can exhibit potent neutralizing activity and are currently being pursued as a therapeutic option for infusion into patients during severe disease and for targeted generation in vaccines 13-15. Defining the nature of the antibody response to SARS-CoV-2 infection as a function of age and clinical syndrome can provide essential insights for improved screening and targeted protection for the global population that continues to suffer from this relentless pandemic. In this study, we inves...
SUMMARY Metazoan sibling cells often diverge in activity and identity, suggesting links between growth signals and cell fate. We show that unequal transduction of nutrient-sensitive PI3K/AKT/mTOR signaling during cell division bifurcates transcriptional networks and fates of kindred cells. A sibling B lymphocyte with stronger signaling, indexed by FoxO1 inactivation and IRF4 induction, undergoes PI3K-driven Pax5 repression and plasma cell determination, while its sibling with weaker PI3K activity renews a memory or germinal center B cell fate. PI3K-driven effector T cell determination silences TCF1 in one sibling cell, while its PI3K-attenuated sibling self-renews in tandem. Prior to bifurcations achieving irreversible plasma or effector cell fate determination, asymmetric signaling during initial divisions specifies a more proliferative, differentiation-prone lymphocyte in tandem with a more quiescent memory cell sibling. By triggering cell division but transmitting unequal intensity between sibling cells, nutrient-sensitive signaling may be a frequent arbiter of cell fate bifurcations during development and repair.
Background: Although convalescent plasma has been widely used to treat severe coronavirus disease 2019 (COVID-19), data from randomized controlled trials that support its efficacy are limited. Objective: To evaluate the clinical efficacy and safety of convalescent plasma among adults hospitalized with severe and critical COVID-19. Design: Randomized, double-blind, controlled, multicenter, phase 2 trial conducted from April 21st to November 27th, 2020. Setting: Five hospitals in New York City (NY, USA) and Rio de Janeiro (Brazil). Participants: Hospitalized patients aged ≥18 years with laboratory-confirmed COVID-19, infiltrates on chest imaging and oxygen saturation ≤ 94% on room air or requirement for supplemental oxygen, invasive mechanical ventilation, or extracorporeal membrane oxygenation. Intervention: Participants were randomized 2:1 to a single transfusion of either 1 unit of convalescent or normal control plasma. Measurements: The primary outcome was clinical status at 28 days, measured using an ordinal scale and analyzed using a proportional odds model in the intention-to-treat population (with an odds ratio (OR) >1.0 indicating improved clinical status in the convalescent plasma group). Results: Of 223 participants enrolled, 150 were randomized to receive convalescent plasma and 73 to normal control plasma. At 28 days, no significant improvement in clinical status was observed in participants randomized to convalescent plasma (OR 1.50, 95% confidence interval (CI) 0.83-2.68, p=0.180). However, 28-day mortality was significantly lower in participants randomized to convalescent plasma versus control plasma (19/150 [12.6%] versus 18/73 [24.6%], OR 0.44, 95% CI 0.22-0.91, p=0.034). The median titer of anti-SARS-CoV-2 neutralizing antibody in infused convalescent plasma units was 1:160 (IQR 1:80-1:320). In a subset of nasopharyngeal swab samples from Brazil that underwent genomic sequencing, no evidence of neutralization-escape mutants was detected. Serious adverse events occurred in 39/147 (27%) participants who received convalescent plasma and 26/72 (36%) participants who received control plasma. Limitations: Some participants did not receive high-titer convalescent plasma. Conclusion: In adults hospitalized with severe COVID-19, use of convalescent plasma was not associated with significant improvement in 28 days clinical status. However, a significant improvement in mortality was observed, which warrants further evaluation. Registration: ClinicalTrials.gov, NCT04359810 Funding: Amazon Foundation
SUMMARY Selected CD8+ T cells must divide, produce differentiated effector cells, and self-renew, often repeatedly. We now show that silencing expression of the transcription factor TCF1 marks loss of self-renewal by determined effector cells, and that this requires cell division. In acute infections, the first three CD8+ T cell divisions produce daughter cells with unequal proliferative signaling but uniform maintenance of TCF1 expression. The more quiescent initial daughter cells resemble canonical central memory cells. The more proliferative, effector-prone cells from initial divisions can subsequently undergo division-dependent production of a TCF1-negative effector daughter cell along with a self-renewing TCF1-positive daughter cell, the latter also contributing to the memory cell pool upon resolution of infection. Self-renewal in the face of effector cell determination may promote clonal amplification and memory cell formation in acute infections, sustain effector regeneration during persistent subclinical infections, and be rate-limiting, but remediable, in chronic active infections and cancer.
Nish et al. report that production of a fully committed Th1 effector cell occurs during an asymmetric cell division wherein the other daughter cell remains memory cell–like. Unequal transmission of metabolic signaling may be the driver of this regenerative behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.