The topological pressure is defined for sub-additive potentials via separated sets and open covers in general compact dynamical systems. A variational principle for the topological pressure is set up without any additional assumptions. The relations between different approaches in defining the topological pressure are discussed. The result will have some potential applications in the multifractal analysis of iterated function systems with overlaps, the distribution of Lyapunov exponents and the dimension theory in dynamical systems.
Abstract. For general asymptotically sub-additive potentials (resp. asymptotically additive potentials) on general topological dynamical systems, we establish some variational relations between the topological entropy of the level sets of Lyapunov exponents, measuretheoretic entropies and topological pressures in this general situation. Most of our results are obtained without the assumption of the existence of unique equilibrium measures or the differentiability of pressure functions. Some examples are constructed to illustrate the irregularity and the complexity of multifractal behaviors in the sub-additive case and in the case that the entropy map that is not upper-semi continuous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.