Conversion reaction enables Li/garnet interface to construct a kinetically stable interfacial layer for the homogeneous ions transport in all-solid-batteries.
The edges of time reversal symmetry breaking topological superconductors support chiral Majorana bound states as well as spontaneous charge currents. The Majorana modes are a robust, topological property, but the charge currents are non-topological-and therefore sensitive to microscopic details-even if we neglect Meissner screening. We give insight into the non-topological nature of edge currents in chiral p-wave superconductors using a variety of theoretical techniques, including lattice Bogoliubov-de Gennes equations, the quasiclassical approximation, and the gradient expansion, and describe those special cases where edge currents do have a topological character. While edge currents are not quantized, they are generically large, but can be substantially reduced for a sufficiently anisotropic gap function, a scenario of possible relevance for the putative chiral p-wave superconductor Sr2RuO4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.