Recent rapid progress in efficiencies for solar water splitting by photoelectrochemical devices has enhanced its prospects to enable storable renewable energy. Efficient solar fuel generators all use tandem photoelectrode structures, and advanced integrated devices incorporate corrosion protection layers as well as heterogeneous catalysts. Realization of near thermodynamic limiting performance requires tailoring the energy band structure of the photoelectrode and also the optical and electronic properties of the surface layers exposed to the electrolyte. Here, we report a monolithic device architecture that exhibits reduced surface reflectivity in conjunction with metallic Rh nanoparticle catalyst layers that minimize parasitic light absorption. Additionally, the anatase TiO 2 protection layer on the photocathode creates a favorable internal band alignment for hydrogen evolution. An initial solar-to-hydrogen efficiency of 19.3 % is obtained in acidic electrolyte and an efficiency of 18.5 % is achieved at neutral pH condition (under simulated sunlight). Main TextAdvances in the field of artificial photosynthesis 1 have led to the development of functional prototypes for photoelectrochemical water splitting 2 , featuring improved photoelectrode stability through the use of corrosion protection layers 3 and the realization of systems for unassisted water splitting 4-6 in integrated monolithic devices. The requirement for the device operating voltage under illumination to exceed the thermodynamic potential difference for water dissociation of 1.23 V imposes constraints on the energy bandgaps for the photoelectrode absorber layers and their combined operating potential in a series-connected tandem configuration. Several strategies have been followed. Early prototypes used single absorber
Harvesting nonequilibrium hot carriers from plasmonic-metal nanostructures offers unique opportunities for driving photochemical reactions at the nanoscale. Despite numerous examples of hot electron-driven processes, the realization of plasmonic systems capable of harvesting hot holes from metal nanostructures has eluded the nascent field of plasmonic photocatalysis. Here, we fabricate gold/p-type gallium nitride (Au/p-GaN) Schottky junctions tailored for photoelectrochemical studies of plasmon-induced hot-hole capture and conversion. Despite the presence of an interfacial Schottky barrier to hot-hole injection of more than 1 eV across the Au/p-GaN heterojunction, plasmonic Au/p-GaN photocathodes exhibit photoelectrochemical properties consistent with the injection of hot holes from Au nanoparticles into p-GaN upon plasmon excitation. The photocurrent action spectrum of the plasmonic photocathodes faithfully follows the surface plasmon resonance absorption spectrum of the Au nanoparticles and open-circuit voltage studies demonstrate a sustained photovoltage during plasmon excitation. Comparison with Ohmic Au/p-NiO heterojunctions confirms that the vast majority of hot holes generated via interband transitions in Au are sufficiently hot to inject above the 1.1 eV interfacial Schottky barrier at the Au/p-GaN heterojunction. We further investigated plasmon-driven photoelectrochemical CO reduction with the Au/p-GaN photocathodes and observed improved selectivity for CO production over H evolution in aqueous electrolytes. Taken together, our results offer experimental validation of photoexcited hot holes more than 1 eV below the Au Fermi level and demonstrate a photoelectrochemical platform for harvesting hot carriers to drive solar-to-fuel energy conversion.
Harvesting non-equilibrium "hot" carriers from photo-excited metal nanoparticles has enabled plasmon-driven photochemical transformations and tunable photodetection with resonant nanoantennas 1-13. Despite numerous studies on the ultrafast dynamics of hot electrons 14-26 , to date, the temporal evolution of hot holes in metal-semiconductor heterostructures remains unknown. An improved understanding of the carrier dynamics in hot-hole-driven systems is needed to help expand the scope of hot-carrier optoelectronics beyond hot-electron-based devices. Here, using ultrafast transient absorption spectroscopy, we show that plasmon-induced hot-hole injection from gold (Au) nanoparticles into the valence band of p-type gallium nitride (p-GaN) occurs within 200 fs, placing hot-hole transfer on a similar timescale as hot-electron transfer 22,25. We further observed that the removal of hot holes from below the Au Fermi level exerts a discernible influence on the thermalization of hot electrons above it, reducing the peak electronic temperature and decreasing the electron-phonon coupling time relative to Au samples without a pathway for hot-hole collection. First principles calculations 27-29 corroborate these experimental observations, suggesting that hot-hole injection modifies the relaxation dynamics of hot electrons in Au nanoparticles through ultrafast modulation of the d-band electronic structure. Taken together, these ultrafast studies substantially advance our understanding of the temporal evolution of hot holes in metal-semiconductor heterostructures and suggest new strategies for manipulating and controlling the energy distributions of hot carriers on ultrafast timescales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.