SUMMARY Dietary potassium deficiency, common in Western diets, raises blood pressure and enhances salt sensitivity. Potassium homeostasis requires a molecular switch in the distal convoluted tubule (DCT), which fails in familial hyperkalemic hypertension (pseudohypoaldosteronism type 2), activating the thiazide-sensitive NaCl cotransporter, NCC. Here, we show that dietary potassium deficiency activates NCC, even in the setting of high salt intake, thereby causing sodium retention and a rise in blood pressure. The effect is dependent on plasma potassium, which modulates DCT cell membrane voltage and, in turn, intracellular chloride. Low intracellular chloride stimulates WNK kinases to activate NCC, limiting potassium losses, even at the expense of increased blood pressure. These data show that DCT cells, like adrenal cells, sense potassium via membrane voltage. In the DCT, hyperpolarization activates NCC via WNK kinases, whereas in the adrenal gland, it inhibits aldosterone secretion. These effects work in concert to maintain potassium homeostasis.
The mammalian distal convoluted tubule (DCT) makes an important contribution to potassium homeostasis by modulating NaCl transport. The thiazide-sensitive Na/Cl cotransporter (NCC) is activated by low potassium intake and by hypokalemia. Coupled with suppression of aldosterone secretion, activation of NCC helps to retain potassium by increasing electroneutral NaCl reabsorption, therefore reducing Na/K exchange. Yet the mechanisms by which DCT cells sense plasma potassium concentration and transmit the information to the apical membrane are not clear. Here, we tested the hypothesis that the potassium channel Kir4.1 is the potassium sensor of DCT cells. We generated mice in which Kir4.1 could be deleted in the kidney after the mice are fully developed. Deletion of Kir4.1 in these mice led to moderate salt wasting, low BP, and profound potassium wasting. Basolateral membranes of DCT cells were depolarized, nearly devoid of conductive potassium transport, and unresponsive to plasma potassium concentration. Although renal WNK4 abundance increased after Kir4.1 deletion, NCC abundance and function decreased, suggesting that membrane depolarization uncouples WNK kinases from NCC. Together, these results indicate that Kir4.1 mediates potassium sensing by DCT cells and couples this signal to apical transport processes.
Kir4.1 in the distal convoluted tubule plays a key role in sensing plasma potassium and in modulating the thiazide-sensitive sodium-chloride cotransporter (NCC). Here we tested whether dietary potassium intake modulates Kir4.1 and whether this is essential for mediating the effect of potassium diet on NCC. High potassium intake inhibited the basolateral 40 pS potassium channel (a Kir4.1/5.1 heterotetramer) in the distal convoluted tubule, decreased basolateral potassium conductance, and depolarized the distal convoluted tubule membrane in Kcnj10flox/flox mice, herein referred to as control mice. In contrast, low potassium intake activated Kir4.1, increased potassium currents, and hyperpolarized the distal convoluted tubule membrane. These effects of dietary potassium intake on the basolateral potassium conductance and membrane potential in the distal convoluted tubule were completely absent in inducible kidney-specific Kir4.1 knockout mice. Furthermore, high potassium intake decreased, whereas low potassium intake increased the abundance of NCC expression only in the control but not in kidney-specific Kir4.1 knockout mice. Renal clearance studies demonstrated that low potassium augmented, while high potassium diminished, hydrochlorothiazide-induced natriuresis in control mice. Disruption of Kir4.1 significantly increased basal urinary sodium excretion but it abolished the natriuretic effect of hydrochlorothiazide. Finally, hypokalemia and metabolic alkalosis in kidney-specific Kir4.1 knockout mice were exacerbated by potassium restriction and only partially corrected by a high-potassium diet. Thus, Kir4.1 plays an essential role in mediating the effect of dietary potassium intake on NCC activity and potassium homeostasis.
We have used Western blot to examine the expression of cSrc protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP)-1D in the renal cortex, and the patch-clamp technique to determine the role of PTK in mediating the effect of dietary K intake on the small-conductance K (SK) channel in the cortical collecting duct (CCD). When rats were on a K-deficient (KD) diet for 1, 3, 5, and 7 days, the expression of cSrc increased by 40, 90, 140, and 135%, respectively. In contrast, the expression of cSrc in the renal cortex from rats on a high-K (HK) diet for 1, 2, and 3 days decreased by 40, 60, and 75%, respectively. However, the protein level of PTP-1D was not significantly changed by dietary K intake. The addition of 1 microM herbimycin A increased NP(o), a product of channel number (N) and open probability (P(o)) in the CCD from rats on a normal diet or on a KD diet. The increase in NP(o) was 0.30 (normal), 0.45 (1-day KD), 0.65 (3-day KD), 1.55 (5-day KD), and 1.85 (7-day KD), respectively. Treatment of the CCD with herbimycin A from rats on a KD diet increased NP(o) per patch from the control value (0.7) to 1.4 (1-day KD), 1.6 (3-day KD), 2.6 (5-day KD), and 3.5 (7-day KD), respectively. In contrast, HK intake for as short as 1 day abolished the effect of herbimycin A. Furthermore, the expression of ROMK channels in the renal cortex was the same between rats on a KD diet or on a HK diet. Moreover, treatment with herbimycin A did not further increase NP(o) in the CCDs from rats on a HK diet. We conclude that dietary K intake plays a key role in regulating the activity of the SK channels and that PTK is involved in mediating the effect of the K intake on channel activity in the CCD.
The aim of this mini review is to provide an overview regarding the role of inwardly rectifying potassium channel 4.1 (Kir4.1)/Kir5.1 in regulating renal K+ excretion. Deletion of Kir4.1 in the kidney inhibited thiazide-sensitive NaCl cotransporter (NCC) activity in the distal convoluted tubule (DCT) and slightly suppressed Na-K-2Cl cotransporter (NKCC2) function in the thick ascending limb (TAL). Moreover, increased dietary K+ intake inhibited, whereas decreased dietary K+ intake stimulated, the basolateral potassium channel (a Kir4.1/Kir5.1 heterotetramer) in the DCT. The alteration of basolateral potassium conductance is essential for the effect of dietary K+ intake on NCC because deletion of Kir4.1 in the DCT abolished the effect of dietary K+ intake on NCC. Since potassium intake-mediated regulation of NCC plays a key role in regulating renal K+ excretion and potassium homeostasis, the deletion of Kir4.1 caused severe hypokalemia and metabolic alkalosis under control conditions and even during increased dietary K+ intake. Finally, recent studies have suggested that the angiotensin II type 2 receptor (AT2R) and bradykinin-B2 receptor (BK2R) are involved in mediating the effect of high dietary K+ intake on Kir4.1/Kir5.1 in the DCT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.