Large variation in electrocardiogram (ECG) waveforms continues to present challenges in defining R-wave locations in ECG signals. This research presents a procedure to extract the R-wave locations by forward-backward (FB) algorithm and classify the arrhythmic beat conditions by using RR intervals. The FB algorithm shows forward and backward searching rules from QRS onset and eliminates lower-amplitude signals near the baseline using a statistical process control concept. The proposed algorithm was trained the optimal parameters by using MIT-BIH arrhythmia database (MITDB), and it was verified by actual Holter ECG signals from a local hospital. The signals are classified into normal (N) and three arrhythmia beat types including premature ventricular contraction (PVC), ventricular flutter/fibrillation (VF), and second-degree heart block (BII) beat. This work produces 98.54% accuracy in the detection of R-wave location; 98.68% for N beats; 91.17% for PVC beats; and 87.2% for VF beats in the collected Holter ECG signals, and the results are better than what are reported in literature.
In this study, the authors propose an approach for detecting R-wave of electrocardiogram (ECG) signals. A statistical process control chart is successfully integrated with wavelet transformation (WT) to detect R-wave locations. This chart is a graphical display of the quality characteristic measured or computed from samples versus the sample number or time from the production line in a factory. This research performed WT at the signal preprocessing stage; the change points and control limits are then determined for each segment and the R-wave location is rechecked by spreading the points at the decision stage. The proposed procedures determine the change points and control limits for each segment. This method can be used to eliminate high-frequency noise, baseline shifts and artifacts from ECG signals, and R-waves can be effectively detected. In addition, there is flexibility in parameter value selection and robustness over wider noise ranges for the proposed QRS detection method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.