Abstract:We describe the design, implementation and performance of a novel airborne system, which integrates commercial waveform LiDAR, CCD (Charge-Coupled Device) camera and hyperspectral sensors into a common platform system. CAF's (The Chinese Academy of Forestry) LiCHy (LiDAR, CCD and Hyperspectral) Airborne Observation System is a unique system that permits simultaneous measurements of vegetation vertical structure, horizontal pattern, and foliar spectra from different view angles at very high spatial resolution (~1 m) on a wide range of airborne platforms. The horizontal geo-location accuracy of LiDAR and CCD is about 0.5 m, with LiDAR vertical resolution and accuracy 0.15 m and 0.3 m, respectively. The geo-location accuracy of hyperspectral image is within 2 pixels for nadir view observations and 5-7 pixels for large off-nadir observations of 55˝with multi-angle modular when comparing to LiDAR product. The complementary nature of LiCHy's sensors makes it an effective and comprehensive system for forest inventory, change detection, biodiversity monitoring, carbon accounting and ecosystem service evaluation. The LiCHy system has acquired more than 8000 km 2 of data over typical forests across China. These data are being used to investigate potential LiDAR and optical remote sensing applications in forest management, forest carbon accounting, biodiversity evaluation, and to aid in the development of similar satellite configurations. This paper describes the integration of the LiCHy system, the instrument performance and data processing workflow. We also demonstrate LiCHy's data characteristics, current coverage, and potential vegetation applications.
Airborne hyper-spectral imaging has been proven to be an efficient means to provide new insights for the retrieval of biophysical variables. However, quantitative estimates of unbiased information derived from airborne hyperspectral measurements primarily require a correction of the anisotropic scattering properties of the land surface depicted by the bidirectional reflectance distribution function (BRDF). Hitherto, angular BRDF correction methods rarely combined viewing-illumination geometry and topographic information to achieve a comprehensive understanding and quantification of the BRDF effects. This is in particular the case for forested areas, frequently underlaid by rugged topography. This paper describes a method to correct the BRDF effects of airborne hyperspectral imagery over forested areas overlying rugged topography, referred in the reminder of the paper as rugged topography-BRDF (RT-BRDF) correction. The local viewing and illumination geometry are calculated for each pixel based on the characteristics of the airborne scanner and the local topography, and these two variables are used to adapt the Ross-Thick-Maignan and Li-Transit-Reciprocal kernels in the case of rugged topography. The new BRDF model is fitted to the anisotropy of multi-line airborne hyperspectral data. The number of pixels is set at 35,000 in this study, based on a stratified random sampling method to ensure a comprehensive coverage of the viewing and illumination angles and to minimize the fitting error of the BRDF model for all bands. Based on multi-line airborne hyperspectral data acquired with the Chinese Academy of Forestry’s LiDAR, CCD, and Hyperspectral system (CAF-LiCHy) in the Pu’er region (China), the results applying the RT-BRDF correction are compared with results from current empirical (C, and sun-canopy-sensor (SCS) adds C (SCS+C)) and semi-physical (SCS) topographic correction methods. Both quantitative assessment and visual inspection indicate that RT-BRDF, C, and SCS+C correction methods all reduce the topographic effects. However, the RT-BRDF method appears more efficient in reducing the variability in reflectance of overlapping areas in multiple flight-lines, with the advantage of reducing the BRDF effects caused by the combination of wide field of view (FOV) airborne scanner, rugged topography, and varying solar illumination angle over long flight time. Specifically, the average decrease in coefficient of variation (CV) is 3% and 3.5% for coniferous forest and broadleaved forest, respectively. This improvement is particularly marked in the near infrared (NIR) region (i.e., >750 nm). This finding opens new possible applications of airborne hyperspectral surveys over large areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.