The expansion experiment of the expansion liner hanger is a one-time failure process, so in order to save cost, the finite element technology needs to be used to simulate the expansion experiment. Obtaining the mechanical parameters of the expansion liner hanger can effectively optimize the size of the expansion liner hanger structure and guide the expansion completion. Firstly, main structure and principle of expandable liner hanger were introduced. Secondly, mechanical equilibrium equations of the expandable process were established to obtain pressure of the expandable fluid, and pressure of the expandable fluid is obtained. Thirdly, finite element (FE) simulation mechanical model of the expansion of the Ø244.5 mm × Ø177.8 mm expandable liner hanger was established to analyze the hang mechanism and the change rule of mechanical parameters during the expansion. The FE results have shown that radial displacement and residual stress of the inner wall of hanger varied in 5 cycles, and the expansion ratio of the expandable tube was 7.4% during the expansion. The expansion force did not change stably but gradually increased in stages. And the hydraulic pressure required for the expandable cone to continuously move down was 18 MPa. According to the contact stress generated on five rubber cylinders and the contact stress generated on five metal collars, the total hang force has been calculated, which exceeds 1000 kN and meets the design requirements. Lastly, the expansion test results have shown that expansion pressure was 19 MPa, and the expansion rate was 7.1%. The mechanical analysis results of the expandable liner hanger were in good agreement with the experiment results in this study, which provide important mechanical parameters for well completion with expandable liner hanger.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.