A novel metal-free and protecting-group-free synthesis method to prepare telechelic thiol-functionalized polyesters is developed by employing organocatalysis. A scope of Brønsted acids, including trifluoromethanesulfonic acid (1), HCl.Et2O (2), diphenyl phosphate (3), γ-resorcylic acid (4) and methanesulfonic acid (5), are evaluated to promote ring-opening polymerization of ε-caprolactone with unprotected 6-mercapto-1-hexanol as the multifunctional initiator. Among them, diphenyl phosphate (3) exhibits great chemoselectivity and efficiency, which allows for simply synthesis of thiol-terminated poly(ε-caprolactone) with near-quantitative thiol fidelity, full monomer conversion, controlled molecular weight and narrow polydispersity. Kinetic study confirms living/controlled nature of the organocatalyzed chemoselective polymerizations. Density functional theory calculation illustrates that the chemoselectivity of diphenyl phosphate (3) is attributed to the stronger bifunctional activation of monomer and initiator/chain-end as well as the lower energy in hydroxyl pathway than thiol one. Moreover, series of tailor-made telechelic thiol-terminated poly(δ-valerolactone) and block copolymers are efficiently generated under mild conditions.
Triphenylmethylium cation catalyzed Povarov reactions with excellent yields in 1 h with a remarkably low loading (0.5 mol %) are disclosed. A Lewis acidic carbenium catalysis mechanism was proposed and validated. A three-component Povarov reaction in a batch was transferred into a two-stage microflow process, which resulted in a 60-fold reduction in reaction time from 2 h to 2 min with 89% separated yield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.