The cyclic calcium release and uptake during calcium oscillation are thought to result from calcium-induced calcium release (CICR); however, it is unclear, especially in nonexcitable cells, how the initial calcium mobilization that triggers CICR occurs. We report here a novel mechanism, other than conventional calcium channels or the phopholipase C-inositol trisphosphate system, for initiating calcium oscillation downstream of integrin signaling. Upon integrin ␣ IIb  3 binding to fibrinogen ligand or the disintegrin rhodostomin, sodium-proton exchanger NHE1 and sodiumcalcium exchanger NCX1 are actively transported to the plasma membrane, and they become physically coupled to integrin ␣ IIb  3 . Lipid raft-dependent mechanisms modulate the membrane targeting and formation of the NHE1-integrin ␣ IIb  3 -NCX1 protein complex. NHE1 and NCX1 within such protein complex are functionally coupled, such that a local increase of sodium concentration caused by NHE1 can drive NCX1 to generate sodium efflux in exchange for calcium influx. The resulting calcium increase inside the cell can then trigger CICR as a prelude to calcium oscillation downstream of integrin ␣ IIb  3 signaling. Fluorescence resonance energy transfer based on fluorescence lifetime measurements is employed here to monitor the intermolecular interactions among NHE1-integrin ␣ IIb  3 -NCX1, which could not be properly detected using conventional biochemical assays.In many excitable or nonexcitable cells, the concentration of free intracellular calcium oscillates with a period ranging from a few seconds to a few minutes. Such calcium oscillations are involved in a wide variety of cellular functions (1, 2). It is generally believed that, except for minor variations, the cyclic increase and decrease of calcium results from an autocatalytic release of calcium in a process called calcium-induced calcium release (CICR), 2 followed by a slow negative feedback that terminates calcium release. The cytoplasmic free calcium is then taken up into the organelles to reset the cycle. Despite a general agreement on how calcium oscillation proceeds once the system has been turned on, various different mechanisms have been proposed to explain how the initial calcium mobilization is generated that triggers CICR.As a general rule, calcium entry through voltage-gated channels in electrically excitable cells (3) or through agonist-receptor interactions in nonexcitable cells, such as epithelial cells, hepatocytes, or oocytes (4), is thought to initiate the CICR process (1, 2). Typically, in nonexcitable cells, the binding of an agonist, such as a hormone, a growth factor, or an extracellular matrix, to the corresponding cell surface receptor initiates a series of reactions that end in the activation of phopholipase C (PLC) and the production of the secondary messenger inositol trisphosphate (IP 3 ) (1, 2, 4). IP 3 is thought to induce calcium release from the internal endoplasmic reticulum or mitochondria store, and governs the CICR mechanisms that modulate calcium oscillat...
Magnetic sodium alginate (SA)-based biosorbent Fe₃O₄@SA-Ca gel beads were synthesized by droplet polymerization using Ca2+ ions as crosslinking agent, and characterized by Scanning Electron Microscopy (SEM). Fe₃O₄@SA-Ca polymer was used for the removal of Direct Orange 26 (DO-26) dye from water. The ratio of raw materials and some important conditions affecting the adsorbent performance were carefully examined. The adsorption kinetics, isotherms and thermodynamics were investigated. When the concentrations of SA, CaCl2 and Fe3O4 solutions were 1.9, 10 and 10 g/L, respectively, the black Fe₃O₄@SA-Ca gel beads with about 3 mm diameter were successfully prepared by curing 6h at room temperature. The polymer gel exhibits ultra-high adsorption capacity of 1252 mg/g and removal efficiency of 96.2 % for DO-26 under the conditions of 0.05 g polymer dosage, 2600 mg/L of dye initial concentration, solution pH 2.0 and 90 min of the adsorption time at 298 K. The dye removal efficiency can be all over 92 % in a wide pH range of 2.0 to 10.0. The adsorption process completely accorded with the pseudo-second-order rate model at different temperatures (298 ~ 328 K). The dye adsorption behavior was well in line with Freundlich model. The thermodynamic study indicated that the adsorption reaction was of spontaneous and exothermic nature. SEM analysis showed that the Fe₃O₄@SA-Ca gel beads appeared uneven surface with irregular folds and grooves. A high-cost-effective magnetic biosorbent, Fe₃O₄@SA-Ca can super effectively remove direct dyes from high-concentration wastewater in a wide range of acidity, and can be easily separated and recovered from water after adsorption without secondary pollution, and would have a good application prospect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.