As one of the most important photocatalysts, TiO2 has triggered broad interest and intensive studies for decades. Observation of the interfacial reactions between water and TiO2 at microscopic scale can provide key insight into the mechanisms of photocatalytic processes. Currently, experimental methodologies for characterizing photocatalytic reactions of anatase TiO2 are mostly confined to water vapor or single molecule chemistry. Here, we investigate the photocatalytic reaction of anatase TiO2 nanoparticles in water using liquid environmental transmission electron microscopy. A self-hydrogenated shell is observed on the TiO2 surface before the generation of hydrogen bubbles. First-principles calculations suggest that this shell is formed through subsurface diffusion of photo-reduced water protons generated at the aqueous TiO2 interface, which promotes photocatalytic hydrogen evolution by reducing the activation barrier for H2 (H–H bond) formation. Experiments confirm that the self-hydrogenated shell contains reduced titanium ions, and its thickness can increase to several nanometers with increasing UV illuminance.
We have used two-photon photoemission (2PPE) spectroscopy and first-principles density functional theory calculations to investigate the electronic structure and photoabsorption of the reduced anatase TiO2(101) and rutile TiO2(110) surfaces. 2PPE measurements on anatase (101) show an excited resonance induced by reduced Ti3+ species centered around 2.5 eV above the Fermi level (EF). While this state is similar to that observed on the rutile (110) surface, the intensity of the 2PPE peak is much weaker. The computed oscillator strengths of the transitions from the occupied gap states to the empty states in the conduction band show peaks between 2.0 and 3.0 eV above the conduction band minimum (CBM) on both surfaces, confirming the presence of empty Ti3+ resonances at these energies. Although the crystal field environment of Ti ions is octahedral in both rutile and anatase, Ti3+ ions exhibit distinct d orbital splittings due to different distortions of the TiO6 units. This affects the directions of the transition dipoles from the gap states to the conduction band, explaining the polarization dependence of the 2PPE signal in the two materials. Our results also show that the Ti3+ induced states in the band gap are shallower in anatase than in rutile. The d → d transitions from the occupied gap states to the empty Ti3+ excited states in anatase can occur at energies well below 3 eV, consistent with the observed visible-light photocatalytic activity of Ti3+ self-doped anatase.
We investigate the effect of adsorbates on the structure and photoabsorption of reduced TiO by first-principles calculations of rutile TiO(110) in the presence of both titanium interstitials (Ti's) and adsorbed water or methanol. Our results show that while Ti's prefer to reside in deep inner layers when the surface is clean, they tend to diffuse toward the surface in the presence of water or methanol. This migration is due to the mutual stabilization of the adsorbates and Ti defects in the near-surface region. We also find that adsorbed water/methanol changes the orbital character and localization sites of the excess electrons associated with the Ti. These results can explain why the adsorption of water and methanol enhances the photoabsorption of the reduced TiO(110) surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.