Neuronal nitric oxide synthase (nNOS) in fast-twitch skeletal muscle fibers is primarily particulate in contrast to its greater solubility in brain. Immunohistochemistry shows nNOS localized to the sarcolemma, with enrichment at force transmitting sites, the myotendinous junctions, and costameres. Because this distribution is similar to dystrophin, we determined if nNOS expression was affected by the loss of dystrophin. Significant nNOS immunoreactivity and enzyme activity was absent in skeletal muscle tissues from patients with Duchenne muscular dystrophy. Similarly, in dystrophin-deficient skeletal muscles from mdx mice both soluble and particulate nNOS was greatly reduced compared with C57 control mice. nNOS mRNA was also reduced in mdx muscle in contrast to mRNA levels for a dystrophin binding protein, cal-syntrophin. nNOS levels increased dramatically from 2 to 52 weeks of age in C57 skeletal muscle, which may indicate a physiological role for NO in aging-related processes. Biochemical purification readily dissociates nNOS from the dystrophin-glycoprotein complex. Thus, nNOS is not an integral component of the dystrophin-glycoprotein complex and is not simply another dystrophin-associated protein since the expression of both nNOS mRNA and protein is affected by dystrophin expression.
Nitric oxide generated by neuronal nitric oxide synthase in contracting skeletal muscle fibers may regulate vascular relaxation via a cGMP-mediated pathway. Neuronal nitric oxide synthase content is greatly reduced in skeletal muscles from mdx mice. cGMP formation increased in contracting extensor digitorum longus muscles in vitro from C57 control, but not mdx mice. The increase in cGMP content was abolished with N G -nitro-L-arginine. Sodium nitroprusside treatment increased cGMP levels in muscles from both C57 and mdx mice. Skeletal muscle contractions also inhibited phenylephrine-induced phosphorylation of smooth muscle myosin regulatory light chain. Arteriolar dilation was attenuated in contracting muscles from mdx but not C57 mice. NO generated in contracting skeletal muscle may contribute to vasodilation in response to exercise.z 1998 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.