Mice deficient in interleukin-5 (IL-5-/- mice) were generated by gene targeting in embryonal stem cells. Contrary to previous studies, no obligatory role for IL-5 was demonstrated in the regulation of conventional B (B-2) cells, in normal T cell-dependent antibody responses or in cytotoxic T cell development. However, CD5+ B cells (B-1 cells) in the peritoneal cavity were reduced by 50%-80% in 2-week-old IL-5-/- mice, returning to normal by 6-8 weeks of age. The IL-5-/- mice did not develop blood and tissue eosinophilia when infected with the helminth Mesocestoides corti, but basal levels of eosinophils with normal morphology were produced in the absence of IL-5. IL-5 deficiency did not affect the worm burden of infected mice, indicating that increased eosinophils do not play a significant role in the host defence in this parasite model.
Using interleukin-10 (IL-10)-deficient (IL-10؊/؊ ) mice, previous studies revealed a pathological immune response after infection with Trypanosoma cruzi that is associated with CD4؉ T cells and overproduction of proinflammatory cytokines. In this study we further investigate the pathology and potential mediators for the mortality in infected animals. T. cruzi-infected IL-10 ؊/؊ mice showed reduced parasitemia accompanied by increased systemic release of gamma interferon (IFN-␥), IL-12, and reactive nitrogen intermediates and overproduction of tumor necrosis factor alpha (TNF-␣). Despite this early resistance, IL-10 ؊/؊ mice died within the third week of infection, whereas all control mice survived acute infection. The clinical manifestation with weight loss, hypothermia, hypoglycemia, hyperkalemia, and increased liver-derived enzymes in the blood together with hepatic necrosis and intravascular coagulation in moribund mice indicated a toxic shock-like syndrome, possibly mediated by the systemic TNF-␣ overproduction. Indeed, high production of systemic TNF-␣ significantly correlated with mortality, and moribund mice died with critically high TNF-␣ concentrations in the blood. Consequent treatment with anti-TNF-␣ antiserum attenuated pathological changes in T. cruzi-infected IL-10 ؊/؊ mice and significantly prolonged survival; the mice died during the fourth week postinfection, again with a striking correlation between regaining high systemic TNF-␣ concentrations and the time of death. Since elevated serum IL-12 and IFN-␥ concentrations were not affected by the administration of antiserum, these studies suggest that TNF-␣ is the direct mediator of this toxic shock syndrome. In conclusion, induction of endogenous IL-10 during experimentally induced Chagas' disease seems to be crucial for counterregulating an overshooting proinflammatory cytokine response resulting in TNF-␣-mediated toxic shock.
In some parasitic infections immunosuppression is a prominent characteristic of the host-parasite interplay. We have used a murine alveolar echinococcosis (AE) model in susceptible C57BL/6 mice to document a suppressed splenocyte proliferative response to concanavalin A (Con A) at the early (1-month) stage and to Echinococcus multilocularis-crude antigen (Emc-antigen) at the late (4-6-month) stage of chronic infection. Despite proliferative suppression, splenic cytokine production [interleukin-2 (IL-2), IL-4 and interferon-gamma (IFN-gamma)] in response to Con A or Emc-antigen stimulation was not suppressed at 1 month postinfection (p.i.). Infection resulted in a strong Mac-1+ cell infiltration of the peritoneal cavity and spleen. Peritoneal cells (PEC) from mice infected at the 1-month stage were rich in macrophages and expressed significantly higher levels of transcripts for the inflammatory cytokine IL-1beta and for tumour necrosis factor-alpha and inducible nitric oxide synthase (iNOS), when compared with PEC from non-infected control mice. Conversely, the IL-10 transcript level remained low and did not change during infection. Spleen cells supplemented with PEC from infected mice induced a marked increase in the levels of nitrite in response to Con A and Emc-antigen stimulation, and also a complete suppression of splenic proliferation. The spleen cells from late-stage infected mice expressed only background levels of IL-10 but greatly increased levels of iNOS, when compared with normal spleen cells. This observation correlated with the immunosuppression demonstrated at the late stage of murine AE. Furthermore, the suppressed splenic proliferative responses observed at the early and late stage were reversed to a large extent by the addition of NG-monomethyl-l-arginine and partially by anti-IFN-gamma. Thus, our results demonstrated that the immunosuppression observed in chronic AE was not primarily dependent on IL-10 but rather on nitric oxide production by macrophages from infected animals.
was predominantly of the IgG3 and IgG2a isotypes and of the IgG3 and IgG2b isotypes in CD40؊/؊ mice. This finding suggested that in vivo, the IgG response to major carbohydrate antigen Em2(G11) of E. multilocularis could take place independently of ␣ ؉ CD4 ؉ T cells and in the absence of CD40-CD40 ligand interactions; thus, the Em2(G11) antigen of the acellular LL represents a T-cellindependent antigen. Functionally, the encapsulating LL, and especially its major carbohydrate antigen, Em2(G11), seems to be one of the key factors in the parasite's survival strategy and acts by modulating the host immune response by virtue of its T-cell-independent nature.
In the present study, interleukin-6 (IL-6)-deficient mice were infected with Giardia lamblia clone GS/M-83-H7. Murine IL-6 deficiency did not affect the synthesis of parasite-specific intestinal immunoglobulin A. However, in contrast to wild-type mice, IL-6-deficient animals were not able to control the acute phase of parasite infection. Reverse transcription-PCR-based quantitation of cytokine mRNA levels in peripheral lymph node cells exhibited a short-term up-regulation of IL-4 expression in IL-6-deficient mice that seemed to be associated with failure in controlling the parasite population. This observation suggests a further elucidation of IL-4-dependent, Th2-type regulatory processes regarding their potential to influence the course of G. lamblia infection in the experimental murine host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.