Multidrug resistant (MDR) cancer cells overexpressing P-glycoprotein (P-gp) display variations in invasive and metastatic behavior. We aimed to clarify the mechanism(s) underlying this observation and transfected vectors carrying CD147, a glycoprotein enriched on the surface of tumor cells that stimulates the production of matrix metalloproteinases (MMPs), and specific shCD147 into MCF7 and MCF7/Adr cells, respectively. Using quantitative real-time polymerase chain reaction and Western blot, we found that overexpression of CD147 in MCF7 cells up-regulated MDR1, MMP2, and MMP9 on both transcription and expression levels, which promoted tumor cells metastasis and conferred them multidrug resistance to P-gp substrate drugs, as determined by in vitro invasion assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. On the other hand, silencing of CD147 in MCF7/Adr cells led to the opposite effect. Moreover, Erk1/2 in CD147-overexpressing clones were observed to be highly activate and after treatment with U0126, an Erk1/2-specific inhibitor, the expression of MDR1, MMP2 and MMP9 were decreased significantly. Thus, CD147 may assume a dual role, since it had intrinsic stimulative effects on tumor invasion in vitro as well as increasing resistance to P-gp substrate drugs. M ultidrug resistance (MDR) and tumor metastasis are the two main causes of treatment failure and mortality in cancer patients. These two properties of malignant tumors have been studied extensively and there are evidences suggesting functional linkage between the two phenotypes.(1-3) Up-regulation of CD147 has been reported in many MDR cancers.(4) CD147 (EMMPRIN or extracellular matrix metallo-proteinase inducer) is the major stimulator of MMPs. They congregate on the surfaces of most tumor cells to produce elevated levels of several MMPs.The greatly increased expression or activity of distinct MMPs observed in MDR cancer cells could be attributed to the elevated expression of CD147.(4) Morever, Misra et al. (8) have demonstrated that CD147 is also involved in resistance of cancer cells to some chemotherapeutic agents. Inhibition of CD147 gene expression via RNAi could increase chemosensitivity to paclitaxel in the human ovarian cancer cell line.(9) As we know, more than one mechanism participates in MDR to chemotherapeutic drugs, the detailed mechanisms underlying these observations have not been clarified yet. MDR is often associated with overexpression of P-glycoprotein (P-gp), a transmembrane, adenosine triphosphate (ATP)-dependent transporter encoded by the MDR1 gene. (10,11) Our main purpose in the current research was to explore whether CD147 participated in the regulation of both MDR1 and MMPs. Additional, tyrosine kinases have been confirmed to be required not only for CD147 induction of MMPs, (12)(13)(14)(15) but for mediation of the expression of MDR1 as well.(16) Since tyrosine kinases are integrally involved in MAP kinase (MAPK) signaling pathways, we attempted to further clarify whether MMPs and MDR1 expression...
Background: Multidrug-resistant cancer cells overexpressing P-glycoprotein (P-gp) display variations in invasive and metastatic ability through the upregulation of the extracellular matrix metalloproteinase (MMP) inducer (CD147). However, the direct linkage between these two proteins is still unclear. Methods: We used immunoprecipitation, immunofluorescence analysis, migration and invasion assays, drug sensitivity assay and Western blot to measure the physical and functional interaction between P-gp and CD147. Then we transfected vectors carrying ubiquitin C-terminal hydrolase L1 (UCH-L1) or UCH-L1 siRNA into MCF7 and MCF7/Adr cells, respectively, and investigated the role of UCH-L1 in the regulation of the expression and degradation of P-gp, CD147 and MMP-1, MMP-2, and MMP-9 by quantitative real-time polymerase chain reaction, Western blot and immunoprecipitation. Results: In this paper, we showed that P-gp and CD147 interacted with each other, and that the ubiquitin-proteasome pathway played an important role in the turnover of them. In addition, we found that inhibition of N-glycosylation increased the ubiquitination and degradation of P-gp and CD147, and affected their function. UCH-L1 not only regulated the expression of P-gp, CD147 and MMP-1, MMP-2, and MMP-9, but also the ubiquitination and degradation of P-gp and CD147 in breast cancer cells. Conclusion: Our results demonstrate a mechanism underlying the linkage between multidrug resistance and tumor metastasis, and suggest for the first time that modulating the ubiquitination of P-gp and CD147 might be a novel method for tumor therapy.
Loss of BCL2L10 protein expression predicts poor clinical outcome in gastric carcinoma.
Abstract. Ubiquitin carboxy terminal hydrolase-L1 (UCH-L1) belongs to the UCH proteases family that deubiquitinates ubiquitin-protein conjugates in the ubiquitin-proteasome system. Previous research showed that UCH-L1 was expressed in mouse retinal cells and testicular germ cells, and its function was associated with apoptosis. But it is still unclear whether UCH-L1 is concerned with apoptosis in tumor cells. In order to clarify the role of UCH-L1 in tumor cells, multi-drug resistance (MDR) human breast carcinoma cell line MCF7/Adr, that expresses relatively high UCH-L1, and its parental cell line MCF7, that expresses relatively low UCH-L1, were chosen for this study. We transfected pcDNA3.1-UCH-L1 plasmid and UCH-L1 siRNA into MCF7 and MCF7/Adr cells, respectively. Using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, Western blot, Hoechst 33258 staining assay and flow cytometry, we found that over-expression of UCH-L1 in MCF7 cells induced apoptosis. On the other hand, silencing of UCH-L1 in MCF7/Adr cells led to the opposite effect. Moreover, to explore the mechanism underling these observations, we further investigated the expression of phospho-Akt and its downstream signal phospho-IκB-α and other signal molecules including Fas, Fas-L, Trail, DR4, DR5, Bax, cytochrome C, active caspase-3, phospho-p53, phospho-Mdm-2, Bcl-2, Bcl-xL, p21 and p27. The results indicated that the process of apoptosis triggered by UCH-L1 is, at least in part, probably through Phosphoinositide 3-kinase (PI3K)/ Akt signal pathway. Our findings suggest that modulating the ubiquitination and deubiquitination pathway could be a novel method for tumor therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.