SV40 has been implicated in the etiology of 40% to 60% of human mesotheliomas. These studies could have important medical implications concerning possible sources of human infection and potential therapies if human tumors are induced by this agent. We did PCR-based analysis to detect SV40 large T antigen DNA in human mesotheliomas. None of 69 tumors in which a single copy gene was readily amplified contained detectable SV40 large T antigen sequences. Under these conditions, it was possible to detect one copy of integrated SV40 DNA per cell in a mixture containing a 5,000-fold excess of normal cells using formalin-fixed preparations. Kidney, a known reservoir of SV40 in monkeys, from some of these individuals were also negative for SV40 large T antigen sequences. A subset of mesotheliomas was analyzed for SV40 large T antigen expression by immunostaining with a highly specific SV40 antibody. These tumors as well as several human mesothelioma cell lines previously reported to contain SV40 large T antigen were negative for detection of the virally encoded oncoprotein. Moreover, mesothelioma cell lines with wild-type p53 showed normal p53 function in response to genotoxic stress, findings inconsistent with p53 inactivation by the putative presence of SV40 large T antigen. Taken together, these findings strongly argue against a role of SV40 by any known transformation mechanism in the etiology of the majority of human malignant mesotheliomas. (Cancer Res 2005; 65(7): 2602-9)
The tumor suppressor p53 (TP53) has a well-studied role in triggering cell cycle checkpoint in response to DNA damage. Previous studies have suggested that functional p53 enhances chemosensitivity. In contrast, data are presented to show that p53 can be required for cell survival following DNA damage due to activation of reversible cell cycle checkpoints. The cellular outcome to DNA damage is determined by the duration and extent of the stimulus in a p53-dependent manner. In response to transient or low levels of DNA damage, p53 triggers a reversible G2 arrest whereas a sustained p53-dependent cell cycle arrest and senescence follows prolonged or high levels of DNA damage. Regardless of the length of treatment, p53-null cells arrest in G2, but ultimately adapt and proceed into mitosis. Interestingly, they fail to undergo cytokinesis, become multinucleated, and then die from apoptosis. Upon transient treatment with DNA damaging agents, wild-type p53 cells reversibly arrest and repair the damage, whereas p53-null cells fail to do so and die. These data indicate that p53 can promote cell survival by inducing reversible cell cycle arrest, thereby allowing for DNA repair. Thus, transient treatments may exploit differences between wild-type p53 and p53-null cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.