Neurofibrillary tangles (NFT) composed of the microtubule-associated protein tau are prominent in Alzheimer disease (AD), Pick disease, progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD). Mutations in the gene (Mtapt) encoding tau protein cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), thereby proving that tau dysfunction can directly result in neurodegeneration. Expression of human tau containing the most common FTDP-17 mutation (P301L) results in motor and behavioural deficits in transgenic mice, with age- and gene-dose-dependent development of NFT. This phenotype occurred as early as 6.5 months in hemizygous and 4.5 months in homozygous animals. NFT and Pick-body-like neuronal lesions occurred in the amygdala, septal nuclei, pre-optic nuclei, hypothalamus, midbrain, pons, medulla, deep cerebellar nuclei and spinal cord, with tau-immunoreactive pre-tangles in the cortex, hippocampus and basal ganglia. Areas with the most NFT had reactive gliosis. Spinal cord had axonal spheroids, anterior horn cell loss and axonal degeneration in anterior spinal roots. We also saw peripheral neuropathy and skeletal muscle with neurogenic atrophy. Brain and spinal cord contained insoluble tau that co-migrated with insoluble tau from AD and FTDP-17 brains. The phenotype of mice expressing P301L mutant tau mimics features of human tauopathies and provides a model for investigating the pathogenesis of diseases with NFT.
Summary Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. Hexanucleotide (GGGGCC) repeat expansions in a non-coding region of C9ORF72 are the major genetic cause of FTD and ALS (c9FTD/ALS). The RNA structure of GGGGCC repeats renders these transcripts susceptible to an unconventional mechanism of translation – repeat-associated non-ATG (RAN) translation. Antibodies generated against putative GGGGCC repeat RAN translated peptides (anti-C9RANT) detected high molecular weight, insoluble material in brain homogenates, and neuronal inclusions throughout the central nervous system of c9FTD/ALS cases. C9RANT immunoreactivity was not found in other neurodegenerative diseases, including CAG repeat disorders, or in peripheral tissues of c9FTD/ALS. The specificity of C9RANT for c9FTD/ALS is a potential biomarker for this most common cause of FTD and ALS. These findings have significant implications for treatment strategies directed at RAN translated peptides and their aggregation, and the RNA structures necessary for their production.
Goal-This study aimed to determine the frequency of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U) in the setting of hippocampal sclerosis (HpScl) and Alzheimer's disease (AD) using immunohistochemistry for TAR DNA binding protein 43 (TDP-43), a putative marker for FTLD-U.Methods-Initially, 21 cases of HpScl associated with a variety of other pathologic processes and 74 cases of AD were screened for FTLD-U with TDP-43 immunohistochemistry. A confirmation study was performed on 93 additional AD cases. Specificity of TDP-43 antibodies was assessed using double immunolabeling confocal microscopy, immunoelectron microscopy and biochemistry.Results-TDP-43 immunoreactivity was detected in 71% of HpScl and 23% of AD cases. Double immunostaining of AD cases for TDP-43 and phospho-tau showed that the TDP-43 immunoreactive inclusions were usually distinct from neurofibrillary tangles. At the ultrastructural level TDP-43 immunoreactivity in AD was associated with granular and filamentous cytosolic material and only occasionally associated with tau filaments. Western blots of AD cases revealed a band that migrated at a higher molecular weight than normal TDP-43 that was not present in AD cases without TDP-43 immunoreactivity.Interpretation-The present results suggest that as many as 20% of AD cases and more than 70% of HpScl cases have pathology similar to that found in FTLD-U. Whether this represents concomitant FTLD-U or is analogous to colocalization of α-synuclein and tau in AD, reflecting a propensity for co-deposition of abnormal protein conformers, remains to be determined. KeywordsAlzheimer's disease; biochemistry; electron microscopy; frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U); hippocampal sclerosis; immunohistochemistry; TAR DNA binding protein 43
Mitochondria and the endoplasmic reticulum (ER) form tight structural associations and these facilitate a number of cellular functions. However, the mechanisms by which regions of the ER become tethered to mitochondria are not properly known. Understanding these mechanisms is not just important for comprehending fundamental physiological processes but also for understanding pathogenic processes in some disease states. In particular, disruption to ER–mitochondria associations is linked to some neurodegenerative diseases. Here we show that the ER-resident protein VAPB interacts with the mitochondrial protein tyrosine phosphatase-interacting protein-51 (PTPIP51) to regulate ER–mitochondria associations. Moreover, we demonstrate that TDP-43, a protein pathologically linked to amyotrophic lateral sclerosis and fronto-temporal dementia perturbs ER–mitochondria interactions and that this is associated with disruption to the VAPB–PTPIP51 interaction and cellular Ca2+ homeostasis. Finally, we show that overexpression of TDP-43 leads to activation of glycogen synthase kinase-3β (GSK-3β) and that GSK-3β regulates the VAPB–PTPIP51 interaction. Our results describe a new pathogenic mechanism for TDP-43.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.