The extant literature indicates that threat enhances cognitive processing and physiological arousal. However, being largely based on fear-relevant processes, this model overlooks other adaptive but inhibitory mechanisms in alternative threat emotions such as disgust. Combining visual event-related potential (VERP) indices (P1 and P250/s) with a simple visual search task, we contrasted behavioral and neural responses to carefully controlled images of fear, disgust, or neutral emotion (as a baseline condition). Consistent with previous findings, fear augmented VERP amplitude and electrical current density in associate visual cortices, paralleled by facilitated object search. Conversely, disgust generated an opposite pattern of effects, reflected by reduced VERP potentials and diminished visual cortical current density along with slowed search time. These results demonstrated suppressed sensory perceptual and attentional processing of disgust information, akin to the central ecological function of disgust to minimize contact with contagious objects to avoid contamination and disease. Notably, the rapid emergence of discrimination between fear and disgust as early as 96 ms after stimulus emphasizes the efficiency of emotional classification not only between threat and nonthreat, but also within the threat domain itself. Finally, a positive correlation between anxiety and behavioral and neural divergence of fear and disgust further indicates that despite their convergence on the core affect of threat, disgust and fear instigate distinct response profiles, providing novel insights into the manifold and sometimes paradoxical symptomology in anxiety disorders.
Arabinogalactan proteins (AGPs) are involved in many aspects of plant development. In this study, biochemical and genetic approaches demonstrated that AGPs are abundant in developing fibers and may be involved in fiber initiation and elongation. To further investigate the role of AGPs during fiber development, a fasciclin-like arabinogalactan protein gene (GhFLA1) was identified in cotton (Gossypium hirsutum). Overexpression of GhFLA1 in cotton promoted fiber elongation, leading to an increase in fiber length. In contrast, suppression of GhFLA1 expression in cotton slowed down fiber initiation and elongation. As a result, the mature fibers of the transgenic plants were significantly shorter than those of the wild type. In addition, expression levels of GhFLAs and the genes related to primary cell wall biosynthesis were remarkably enhanced in the GhFLA1 overexpression transgenic fibers, whereas the transcripts of these genes were dramatically reduced in the fibers of GhFLA1 RNA interference plants. An immunostaining assay indicated that both AGP composition and primary cell wall composition were changed in the transgenic fibers. The levels of glucose, arabinose, and galactose were also altered in the primary cell wall of the transgenic fibers compared with those of the wild type. Together, our results suggested that GhFLA1 may function in fiber initiation and elongation by affecting AGP composition and the integrity of the primary cell wall matrix.
The outbreak of the novel coronavirus infectious disease 2019 (COVID-19) caused by the SARS-CoV-2 virus has rapidly spread around the world. Increasing evidence has suggested that patients with COVID-19 may present neurological symptoms, and cerebrovascular diseases are one of the most frequent comorbidities. The markedly elevated D-dimer levels in patients with acute ischemic stroke suggests that SARS-CoV-2 infection may induce an inflammatory response and trigger a hypercoagulation state, thus leading to acute ischemic stroke. Cardioembolism and atherosclerosis in patients with COVID-19 infection may also increase the risk of ischemic stroke. The reduction of the angiotensin-converting enzyme II (ACE2) caused by SARS-CoV-2 binding to the ACE2 receptor can lead to abnormally elevated blood pressure and increase the risk of hemorrhagic stroke. Additionally, the cytokine storm induced by the immune response against the viral infection increases the risk of acute stroke. The management for COVID-19 patients with stroke is not only based on the traditional guidelines, but also based on the experience and new instructions from healthcare workers worldwide who are combatting COVID-19.
Lonicerae japonicae flos (called Jinyinhua, JYH in Chinese), flowers or flower buds of Lonicera japonica Thunberg, is an extremely used traditional edible-medicinal herb. Pharmacological studies have already proved JYH ideal clinical therapeutic effects on inflammation and infectious diseases and prominent effects on multiple targets in vitro and in vivo, such as pro-inflammatory protein inducible nitric oxide synthase, toll-like receptor 4, interleukin-1 receptor. JYH and Lonicerae flos [called Shanyinhua, SYH in Chinese, flowers or flower buds of Lonicera hypoglauca Miquel, Lonicera confusa De Candolle or Lonicera macrantha (D.Don) Spreng]which belongs to the same family of JYH were once recorded as same herb in multiple versions of Chinese Pharmacopoeia (ChP). However, they were listed as two different herbs in 2005 Edition ChP, leading to endless controversy since they have close proximity on plant species, appearances and functions, together with traditional applications. In the past decades, there has no literature regarding to systematical comparison on the similarity concerning research achievements of the two herbs. This review comprehensively presents similarities and differences between JYH and SYH retrospectively, particularly proposing them the marked differences in botanies, phytochemistry and pharmacological activities which can be used as evidence of separate list of JYH and SYH. Furthermore, deficiencies on present studies have also been discussed so as to further research could use for reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.