Studies on the thermal decompositions of diamyl peroxide (DAPO), dicumyl peroxide (DCPO), and tert-butyl cumyl peroxide (TBCP) were conducted by DSC. Heat of decomposition, exothermic onset point, and chemical kinetics were determined and compared to those data of ditert-butyl peroxide (DTBP), a model compound for studying thermokinetics of organic peroxide and standardization of a calorimeter. Similarities and differences of decomposition mechanisms between these organic peroxides were proposed and verified. Kinetics on decomposition of uni-molecular reaction via these similar alkoxyl radials accompanying b C-C bond scission were discussed and compared to the results from ab initio calculations. The ranking of thermal stability on dialkyl peroxides is determined to be in the following sequence: DCPO \ TBCP \ DAPO \ DTBP. This ratedetermining step in thermal decomposition of dialkyl peroxides possessed an average eigenvalue of log A at about 13.1 ± 1.2. Activation energy on the thermal decomposition of these peroxides was calculated to be 139.5 ± 14.4 kJ mol -1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.