Recent studies suggest that thousands of genes may contribute to breast cancer pathophysiologies when deregulated by genomic or epigenomic events. Here, we describe a model "system" to appraise the functional contributions of these genes to breast cancer subsets. In general, the recurrent genomic and transcriptional characteristics of 51 breast cancer cell lines mirror those of 145 primary breast tumors, although some significant differences are documented. The cell lines that comprise the system also exhibit the substantial genomic, transcriptional, and biological heterogeneity found in primary tumors. We show, using Trastuzumab (Herceptin) monotherapy as an example, that the system can be used to identify molecular features that predict or indicate response to targeted therapies or other physiological perturbations.
Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.genomics | therapeutics | predictor
PDZ motifs are protein–protein interaction domains that often bind to COOH-terminal peptide sequences. The two PDZ proteins characterized in skeletal muscle, syntrophin and neuronal nitric oxide synthase, occur in the dystrophin complex, suggesting a role for PDZ proteins in muscular dystrophy. Here, we identify actinin-associated LIM protein (ALP), a novel protein in skeletal muscle that contains an NH2-terminal PDZ domain and a COOH-terminal LIM motif. ALP is expressed at high levels only in differentiated skeletal muscle, while an alternatively spliced form occurs at low levels in the heart. ALP is not a component of the dystrophin complex, but occurs in association with α-actinin-2 at the Z lines of myofibers. Biochemical and yeast two-hybrid analyses demonstrate that the PDZ domain of ALP binds to the spectrin-like motifs of α-actinin-2, defining a new mode for PDZ domain interactions. Fine genetic mapping studies demonstrate that ALP occurs on chromosome 4q35, near the heterochromatic locus that is mutated in fascioscapulohumeral muscular dystrophy.
We report here on experimental and theoretical efforts to determine how best to combine drugs that inhibit HER2 and AKT in HER2+ breast cancers. We accomplished this by measuring cellular and molecular responses to lapatinib and the AKT inhibitors (AKTi) GSK690693 and GSK2141795 in a panel of 22 HER2+ breast cancer cell lines carrying wild type or mutant PIK3CA. We observed that combinations of lapatinib plus AKTi were synergistic in HER2+/PIK3CAmut cell lines but not in HER2+/PIK3CAwt cell lines. We measured changes in phospho-protein levels in 15 cell lines after treatment with lapatinib, AKTi or lapatinib + AKTi to shed light on the underlying signaling dynamics. This revealed that p-S6RP levels were less well attenuated by lapatinib in HER2+/PIK3CAmut cells compared to HER2+/PIK3CAwt cells and that lapatinib + AKTi reduced p-S6RP levels to those achieved in HER2+/PIK3CAwt cells with lapatinib alone. We also found that that compensatory up-regulation of p-HER3 and p-HER2 is blunted in PIK3CAmut cells following lapatinib + AKTi treatment. Responses of HER2+ SKBR3 cells transfected with lentiviruses carrying control or PIK3CAmut sequences were similar to those observed in HER2+/PIK3CAmut cell lines but not in HER2+/PIK3CAwt cell lines. We used a nonlinear ordinary differential equation model to support the idea that PIK3CA mutations act as downstream activators of AKT that blunt lapatinib inhibition of downstream AKT signaling and that the effects of PIK3CA mutations can be countered by combining lapatinib with an AKTi. This combination does not confer substantial benefit beyond lapatinib in HER2+/PIK3CAwt cells.
We put forward a statistical model for sparse, noisy Boolean functions and methods for inference under the model. We focus on the case in which the form of the underlying Boolean function, as well as the number and identity of its inputs are all unknown. We present results on synthetic data and on a study of signalling proteins in cancer biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.