Transferrin (Tf) conjugates of CRM107 are currently being tested in clinical trials for treatment of malignant gliomas. However, the rapid cellular recycling of Tf limits its efficiency as a drug carrier. We have developed a mathematical model of the Tf/TfR trafficking cycle and have identified the Tf iron release rate as a previously unreported factor governing the degree of Tf cellular association. The release of iron from Tf is inhibited by replacing the synergistic carbonate anion with oxalate. Trafficking patterns for oxalate Tf and native Tf are compared by measuring their cellular association with HeLa cells. The amount of Tf associated with the cells is an average of 51% greater for oxalate Tf than for native Tf over a two hour period at Tf concentrations of 0.1 nM and 1 nM. Importantly, diphtheria toxin (DT) conjugates of oxalate Tf are more cytotoxic against HeLa cells than conjugates of native Tf. Conjugate IC 50 values were determined to be 0.06 nM for the oxalate Tf conjugate vs. 0.22 nM for the native Tf conjugate. Thus, we show that inhibition of Tf iron release improves the efficacy of Tf as a drug carrier through increased association with cells expressing TfR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.