MicroRNAs (miRNAs), i.e. small non-coding RNA molecules (∼22 nt), can bind to one or more target sites on a gene transcript to negatively regulate protein expression, subsequently controlling many cellular mechanisms. A current and curated collection of miRNA–target interactions (MTIs) with experimental support is essential to thoroughly elucidating miRNA functions under different conditions and in different species. As a database, miRTarBase has accumulated more than 3500 MTIs by manually surveying pertinent literature after data mining of the text systematically to filter research articles related to functional studies of miRNAs. Generally, the collected MTIs are validated experimentally by reporter assays, western blot, or microarray experiments with overexpression or knockdown of miRNAs. miRTarBase curates 3576 experimentally verified MTIs between 657 miRNAs and 2297 target genes among 17 species. miRTarBase contains the largest amount of validated MTIs by comparing with other similar, previously developed databases. The MTIs collected in the miRTarBase can also provide a large amount of positive samples to develop computational methods capable of identifying miRNA–target interactions. miRTarBase is now available on http://miRTarBase.mbc.nctu.edu.tw/, and is updated frequently by continuously surveying research articles.
The development of endometrial carcinoma (EC) is a multiple-step process, which includes inactivation of tumour suppressor genes, activation of oncogenes, and disturbance of cancer-related genes. Recent studies have shown that the circadian cycle may influence cancer development and prognosis. In this study, the expression of a circadian gene, PER1, was examined in 35 ECs and paired non-tumour tissues by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Expression levels of PER1 were significantly decreased in EC, and mutational analysis of the coding regions, together with methylation analysis of cytosine-phosphate guanosine (CpG) sites in the promoter area, was performed to investigate the possible mechanisms. The analyses detected four single nucleotide polymorphisms in both tumour and non-tumour tissues, which had no relationship with the expression of PER1. In the promoter area of the PER1 gene, the CpG sites were methylated in 31.4% of ECs, but in 11.4% of paired non-tumour tissues (p < 0.05). These results suggest that the down-regulation of PER1 expression in EC was partly due to inactivation of the PER1 gene by DNA methylation of the promoter and partly due to other factors. Analysis of the relationships between the expression of PER1, P53, c-MYC, cyclin A, cyclin B, and cyclin D1 showed no definite relationship. These results suggest that down-regulation of the PER1 gene disrupts the circadian rhythm, which may favour the survival of endometrial cancer cells.
Long noncoding RNAs (lncRNAs) play crucial roles in carcinogenesis. Myocardial infarction-associated transcript (MIAT), originally isolated as a candidate gene for myocardial infarction, has been found to act as an oncogene in chronic lymphocytic leukaemias and neuroendocrine prostate cancer (NEPC); however, little is known about its expression pattern, biological function, and underlying mechanism in non-small cell lung cancer (NSCLC). In this study, we observed that MIAT expression was upregulated in NSCLC, and its overexpression was associated with advanced tumor stage. Moreover, MIAT knockdown decreased cell proliferation, migration, invasion, and cell cycle arrested in G1 phase. Mechanistic investigation revealed that MIAT could interact with histone methyltransferase mixed-lineage leukemia (MLL). MIAT silencing impeded the binding of MLL on the matrix metalloproteinase 9 (MMP9) promoter region and epigenetically reduced MMP9 transcriptional activity. Overall, our findings suggest that MIAT expression is associated with NSCLC and may be one of the critical targets in progression and metastasis in NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.