Differential flows among different ion species are often observed in the solar wind, and such ion differential flows can provide the free energy to drive Alfvén/ion cyclotron and fast-magnetosonic/whistler instabilities. Previous works mainly focused on ion beam instability under the parameters representative of the solar wind nearby 1 au. In this paper we further study proton beam instability using the radial models of the magnetic field and plasma parameters in the inner heliosphere. We explore a comprehensive distribution of proton beam instability as functions of the heliocentric distance and the beam speed. We also perform a detailed analysis of the energy transfer between unstable waves and particles and quantify how much the free energy of the proton beam flows into unstable waves and other kinds of particle species (i.e., proton core, alpha particle, and electron). This work clarifies that both parallel and perpendicular electric fields are responsible for the excitation of oblique Alfvén/ion cyclotron and oblique fast-magnetosonic/whistler instabilities. Moreover, this work proposes an effective growth length to estimate whether the instability is efficiently excited or not. It shows that oblique Alfvén/ion cyclotron instability, oblique fast-magnetosonic/whistler instability, and oblique Alfvén/ion beam instability can be efficiently driven by proton beams drifting at the speed ∼600–1300 km s−1 in the solar atmosphere. In particular, oblique Alfvén/ion cyclotron waves driven in the solar atmosphere can be significantly damped therein, leading to solar corona heating. These results are helpful for understanding proton beam dynamics in the inner heliosphere and can be verified through in situ satellite measurements.
This Letter investigates the electron heat flux instability using the radial models of the magnetic field and plasma parameters in the inner heliosphere. Our results show that both the electron acoustic wave and the oblique whistler wave are unstable in the regime with large relative drift speed (ΔV e ) between electron beam and core populations. Landau-resonant interactions of electron acoustic waves increase the electron parallel temperature that would lead to suppressing the electron acoustic instability and amplifying the growth of oblique whistler waves. Therefore, we propose that the electron heat flux can effectively drive oblique whistler waves in an anisotropic electron velocity distribution function. This study also finds that lower-hybrid waves and oblique Alfvén waves can be triggered in the solar atmosphere, and that the former instability is much stronger than the latter. Moreover, we clarify that the excitation of lower-hybrid waves mainly results from the transit-time interaction of beaming electrons with resonant velocities v ∥ ∼ ω/k ∥, where ω and k ∥ are the wave frequency and parallel wavenumber, respectively. In addition, this study shows that the instability of quasi-parallel whistler waves can dominate the regime with medium ΔV e at the heliocentric distance nearly larger than 10 times of the solar radius.
Electron temperature anisotropies and electron beams are nonthermal features of the observed nonequilibrium electron velocity distributions in the solar wind. In collision-poor plasmas these nonequilibrium distributions are expected to be regulated by kinetic instabilities through wave-particle interactions. This study considers electron instabilities driven by the interplay of core electron temperature anisotropies and the electron beam, and firstly gives a comprehensive analysis of instabilities in arbitrary directions to the background magnetic field. It clarifies the dominant parameter regime (e.g., parallel core electron plasma beta β ec , core electron temperature anisotropy A ec ≡ T ec⊥ /T ec , and electron beam velocity V eb ) for each kind of electron instability (e.g., the electron beam-driven electron acoustic/magnetoacoustic instability, the electron beam-driven whistler instability, the electromagnetic electron cyclotron instability, the electron mirror instability, the electron firehose instability, and the ordinary-mode instability). It finds that the electron beam can destabilize electron acoustic/magnetoacoustic waves in the low-β ec regime, and whistler waves in the medium-and large-β ec regime. It also finds that a new oblique fast-magnetosonic/whistler instability is driven by the electron beam with V eb 7V A in a regime where β ec ∼ 0.1 − 2 and A ec < 1. Moreover, this study presents electromagnetic responses of each kind of electron instability. These results provide a comprehensive overview for electron instability constraints on core electron temperature anisotropies and electron beams in the solar wind.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.