Abstract-The Internet has recently been evolving from homogeneous congestion control to heterogeneous congestion control. Several years ago, Internet traffic was mainly controlled by the traditional RENO, whereas it is now controlled by multiple different TCP algorithms, such as RENO, CUBIC, and Compound TCP (CTCP). However, there is very little work on the performance and stability study of the Internet with heterogeneous congestion control. One fundamental reason is the lack of the deployment information of different TCP algorithms. In this paper, we first propose a tool called TCP Congestion Avoidance Algorithm Identification (CAAI) for actively identifying the TCP algorithm of a remote Web server. CAAI can identify all default TCP algorithms (e.g., RENO, CUBIC, and CTCP) and most non-default TCP algorithms of major operating system families. We then present the CAAI measurement result of about 30 000 Web servers. We found that only of the Web servers still use RENO, 46.92% of the Web servers use BIC or CUBIC, and of the Web servers use CTCP. Our measurement results show a strong sign that the majority of TCP flows are not controlled by RENO anymore, and a strong sign that the Internet congestion control has changed from homogeneous to heterogeneous.
Introducing Clifford algebra as the mathematical foundation, a unified spatiotemporal data model and hierarchical spatio-temporal index are constructed by linking basic data objects, like pointclouds and Spatio-Temporal Hyper Cubes of different dimensions, within the multivector structure of Clifford algebra. The transformation from geographic space into homogeneous and conformal space means that geometric, metric and many other kinds of operators of Clifford algebra can be implemented and we then design the shortest path, high-dimensional Voronoi and unified spatial-temporal process analyses with spacetime algebra. Tests with real world data suggest these traditional GIS analysis algorithms can be extended and constructed under Clifford Algebra framework, which can accommodate multiple dimensions. The prototype software system CAUSTA (Clifford Algebra based Unified Spatial-Temporal Analysis) provides a useful tool for investigating and modeling the distribution characteristics and dynamic process of complex geographical phenomena under the unified spatio-temporal structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.