Understanding the distribution of genetic diversity among individuals, populations and gene pools is crucial for the efficient management of germplasm collections and breeding programs. Diversity analysis is routinely carried out using sequencing of selected gene(s) or molecular marker technologies. Here we report on the development of Diversity Arrays Technology (DArT) for pigeonpea (Cajanus cajan) and its wild relatives. DArT tests thousands of genomic loci for polymorphism and provides the binary scores for hundreds of markers in a single hybridization-based assay. We tested eight complexity reduction methods using various combinations of restriction enzymes and selected PstI/HaeIII genomic representation with the largest frequency of polymorphic clones (19.8%) to produce genotyping arrays. The performance of the PstI/HaeIII array was evaluated by typing 96 accessions representing nearly 20 species of Cajanus. A total of nearly 700 markers were identified with the average call rate of 96.0% and the scoring reproducibility of 99.7%. DArT markers revealed genetic relationships among the accessions consistent with the available information and systematic classification. Most of the diversity was among the wild relatives of pigeonpea or between the wild species and the cultivated C. cajan. Only 64 markers were polymorphic among the cultivated accessions. Such narrow genetic base is likely to represent a serious impediment to breeding progress in pigeonpea. Our study shows that DArT can be effectively applied in molecular systematics and biodiversity studies.
Photodynamic therapy (PDT), which utilizes light excited photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. In order to further enhance PDT effect, PSs are functionalized to target specific sub‐cellular organelles, but most PSs cannot target nucleolus, which is demonstrated as a more efficient and ideal site for cancer treatment. Here, an effective carbon dots (C‐dots) photosensitizer with intrinsic nucleolus‐targeting capability, for the first time, is synthesized, characterized, and employed for in vitro and in vivo image‐guided photodynamic anticancer therapy with enhanced treatment performance at a low dose of PS and light irradiation. The C‐dots possess high ROS generation efficiency and fluorescence quantum yield, excellent in vitro and in vivo biocompatibility, and rapid renal clearance, endowing it with a great potential for future translational research.
Photodynamic therapy (PDT), which utilizes light excite photosensitizers (PSs) to generate reactive oxygen species (ROS) and consequently ablate cancer cells or diseased tissue, has attracted a great deal of attention in the last decades due to its unique advantages. However, the advancement of PDT is restricted by the inherent characteristics of PS and tumor microenvironment (TME). It is urgent to explore high-performance PSs with TME regulation capability and subsequently improve the therapeutic outcomes. Herein, we reported a newly engineered PS of polymer encapsulated carbonized hemin nanoparticles (P-CHNPs) via a facile synthesis procedure for boosting photodynamic anticancer therapy. Solvothermal treatment of hemin enabled the synthesized P-CHNPs to enhance oxidative stress in TME, which could be further amplified under light irradiation. Excellent in vitro and in vivo PDT effects were achieved due to the improved ROS (hydroxyl radicals and singlet oxygen) generation efficiency, hypoxia relief, and glutathione depletion. Moreover, the superior in vitro and in vivo biocompatibility and boosted PDT effect make the P-CHNPs a potential therapeutic agent for future translational research.
A population of 146 RILs (Recombinant Inbred Line) was derived from the cross between a cold-sensitive cultivated Solanum lycopersicum L. XF98-7 and a cold-tolerant wild Solanum pimpinellifolium LA2184. Relative germination ratio (RGR) and chilling index (CI) were used to evaluate the cold tolerance of the parental lines and RILs. It was found that the RGR and CI were significantly different between S. lycopersicum XF98-7 and S. pimpinellifolium LA2184 under cold treatment, indicating that wild species was more adapted to chilling temperature. The continuous and normal distribution of RGR and CI in RIL population suggested that the trait of cold tolerance was a typically quantitative trait controlled by multigenes. The molecular linkage map was constructed by using 120 simple-sequence repeat (SSR) markers, resulting in 15 linkage groups, with a total distance of 256.8 cM and average interval of 2.14 cM. Five QTLs controlling RGR and four QTLs for CI were detected with genetic contribution ranging from 0.95% to 19.55%. Thus, the nine QTLs will provide references for further fine position mapping for cold tolerance. The polymorphic markers could be used as a way of indirectly selecting the plant trait of interest and would promote developing new tomato variety by marker-assisted selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.