Carboxylation of vitamin K-dependent (VKD) proteins is required for their activity and depends upon reduced vitamin K generated by vitamin K oxidoreductase (VKOR) and a redox protein that regenerates VKOR activity. VKD protein carboxylation is inefficient in mammalian cells, and to understand why carboxylation becomes saturated we developed an approach that directly measures intracellular VKD protein carboxylation. Analysis of factor IX (fIX)-expressing BHK cells indicated that slow fIX egress from the endoplasmic reticulum and preferential secretion of the carboxylated form contribute to secreted fIX being more fully-carboxylated. The analysis also revealed the first reported in vivo VKD protein turnover, which was 14-fold faster than occurs in vitro, suggesting facilitation of this process in vivo. r-VKORC1 expression increased the rate of fIX carboxylation and extent of carboxylated fIX ~2-fold, which shows that carboxylation is the rate-limiting step in fIX turnover and which was surprising because turnover in vitro is limited by release of carboxylated fIX. Interestingly, the increases were significantly less than the amount of VKOR overexpression (15-fold). However, when cell extracts were tested in single turnover experiments in vitro, where redox protein is functionally substituted by dithiothreitol, VKOR overexpression increased the fIX carboxylation rate 14-fold, showing r-VKORC1 is functional for supporting fIX carboxylation. These data indicate that the effect of VKOR overexpression is limited in vivo, possibly because a carboxylation component like the redox protein becomes saturated or because another step is now rate-limiting. The studies illustrate the complexity of carboxylation and potential importance of component stoichiometry to overall efficiency.
Vitamin K-dependent (VKD) proteins require carboxylation for diverse functions that include hemostasis, apoptosis, and Ca 2؉ homeostasis, yet the mechanism of carboxylation is not well understood. Combined biochemical and chemical studies have led to a long-standing model in which a carboxylase Cys catalytic base deprotonates vitamin K hydroquinone (KH2), leading to KH2 oxygenation and Glu carboxylation. We previously identified human carboxylase Cys-99 and Cys-450 as catalytic base candidates: Both were modified by N-ethylmaleimide (NEM) and Ser-substituted mutants retained partial activity, suggesting that the catalytic base is activated for increased basicity. Mutants with Cys-99 or Cys-450 substituted by Ala, which cannot ionize to function as a catalytic base, were therefore analyzed. Both single and double mutants had activity, indicating that Cys-99 and Cys-450 do not deprotonate KH2. [ 14 C]NEM modification of C99A͞C450A revealed one additional reactive group; however, Ser-substituted mutants of each of the eight remaining Cys retained substantial activity. To unequivocally test, then, whether any Cys or Cys combination acts as the catalytic base, a mutant with all 10 Cys substituted by Ala was generated. This mutant showed 7% wild-type activity that depended on factor IX coexpression, indicating a VKD protein effect on carboxylase maturation. NEM and diethyl pyrocarbonate inhibition suggested that the catalytic base is an activated His. These results change the paradigm for VKD protein carboxylation. The identity of the catalytic base is critical to understanding carboxylase mechanism and this work will therefore impact both reinterpretation of previous studies and future ones that define how this important enzyme functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.