This article presents two novel neural network models based on recurrent neural network (RNN) for radio frequency power amplifiers (RF PAs): instant gated recurrent neural network (IGRNN) model and instant gated implict recurrent neural network (IGIRNN) model. In IGRNN model, two state control units are introduced to ensure the linear transmission of hidden state and solve the problem of vanishing gradients of RNN model. In contrast with conventional RNN model, IGRNN can better describe the long-term memory effect of power amplifier, more in line with the physical distortion characteristics of power amplifier. Furthermore the instantaneous gates are used to express the input information implicitly to reduce the redundancy of the input information, and a simpler IGIRNN model is proposed. The complexity analysis indicates that the proposed models have significantly lower complexity than other RNN-based variant structures. A wideband Doherty RF PA excited by 100MHz and 120MHz OFDM signals was employed to evaluate the performance. Extensive experimental results reveal that the proposed IGRNN and IGIRNN models can achieve better linearization performance compared with RNN model and traditional GMP model, and have comparable performance with lower computational complexity compared with the state-of-the-art RNN-based variant models, such as gated recurrent unit (GRU) model. INDEX TERMS Nonlinear RF PA, digital predistortion, recurrent neural network, instant gated, behavioral modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.