We have developed a selective upconversion switching method for the ratiometric fluorescence detection of nitrite using upconversion nanoparticles (UCNPs) and an efficient nitrite reaction. The green emission (λ(em) = 539 nm) of NaYF4:Yb(3+),Er(3+) nanoparticles can be selectively quenched by the neutral red (NR) dye due to the spectral overlap between the emission at 539 nm and the absorption of NR, while its red emission (λ(em) = 654 nm) remains unchanged. Nitrite reacts specifically and strongly with NR to form diazonium salt and lose the diazonium group, which sharply decreases the absorption of NR. Thus, the green emission of NaYF4:Yb(3+),Er(3+) can be recovered by increasing the amount of nitrite, leading to visible color changes from red to orange-yellow and finally green under excitation at 980 nm. The increase in the ratio of emission intensities (I539/I654) is quantitatively correlated to the concentration of nitrite ions. Moreover, the developed method has been successfully applied to nitrite detection in real samples such as drinking water, natural water and meat foods. In particular, the upconversion sensors can efficiently avoid background optical interference and thus show potential for the detection of nitrite salts in complex samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.