S U M M A R YFollowing the success of seismic analysis of a semi-circular hill, the problem of SH-wave scattering by a semi-elliptical hill is revisited by using the null-field boundary integral equation method (BIEM). To fully use the analytical property in the null-field boundary integral equation approach in conjunction with degenerate kernels for solving the semi-elliptical hill scattering problem, the problem is decomposed to two regions to produce elliptical boundaries by using the technique of taking free body. One is the half-plane problem containing a semi-elliptical boundary. This semi-infinite problem is imbedded in an infinite plane with an artificial elliptical boundary such that degenerate kernel can be fully applied. The other is an interior problem bounded by an elliptical boundary. The degenerate kernel in the elliptic coordinates for two subdomains is used to expand the closed-form fundamental solution. The semi-analytical formulation in companion with matching boundary conditions yields six constraint equations. Instead of finding admissible wave-expansion bases, our null-field BIEM in conjunction with degenerate kernels has the five features over the conventional BIEM/BEM, (1) free of calculating principal values, (2) exponential convergence, (3) elimination of boundary-layer effect, (4) meshless and (5) well-posed system. All numerical results are compared well with those of using the hybrid method which is also described in this paper. It is interesting to find that a focusing phenomenon is also observed in this study.
A nonlinear steady-state thermal performance model of a fire-tube shell boiler was developed in the present study. The model consists of two semi-empirical equations for the radiative heat flux from the combustion gas to the boiling water and the heat loss flux from the body surface to the ambient. Using this model, we can simulate the boiler performance under standard conditions and draw standard performance curves from which the thermal performance comparison between different boilers can be made on a common basis.
In this paper, based on a variational formalism which originally proposed by Mei [1] for infinite elastic medium and extended by Yeh, et al. [2,3] for elastic half-plane, a hybrid method which combines the finite element and series expansion method is implemented to solve the diffraction of plane waves by a cavity buried in an elastic half-plane. The finite domain which encloses all inhomogeneities including the cavity can be easily formulated by finite element methods. The unknown boundary data obtained by subtracting the known free fields from the total fields which include the boundary nodal displacements and tractions at the interface between the finite domain and the surrounding elastic half-plane are not independent of each other and can be correlated through a series representation. Due to the continuity condition at the interface, the same series representation is still valid for the exterior elastic half-plane to represents the scattered wave. The unknown coefficients of this series are treated as generalized coordinates and can be easily formulated by the same variational principle. The expansion function of the series is composed of basis function. Each basis function is constructed from the basis function for an infinite plane by superimposing an additional homogeneous reflective term to satisfy both traction free conditions at ground surface and radiation conditions at infinity. The numerical results are made against those obtained by boundary element methods, and good agreements are found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.