Background: This study sought to develop and validate a lens opacities classification system based on ultrasound biomicroscopy (UBM) imaging to grade pediatric cataracts.
Methods:The study was conducted at Guangzhou Children's Hospital, Guangzhou Women and Children's Medical Center. UBM images of patients at the hospital from September 2013 to November 2014 were used in this study. We summarized the characteristics of lenticular opacification in each of the following 4 zones: the anterior capsule (A); the cortex (C); the nucleus (N); and the posterior capsule (P). The UBM data and intraoperative videos were compared, and sensitivity, specificity, accuracy, and positive and negative predictive values were determined for our Lens Opacities Classification System based on UBM for Pediatric Cataracts (LOCS-UP) detection. Two physicians classified pediatric cataracts (anterior capsule, cortex, and posterior capsule) by extracting 146 images from the UBM database. Patients' data were recorded to calculate the kappa coefficients. The LOCS-UP was developed.Results: Under this standard, all types of pediatric cataracts can be be classified and acquired a code by the LOCS-UP. The LOCS-UP had the highest sensitivity (100%) and specificity (98.96%) in naming the anterior capsule and the lowest sensitivity (50%) and specificity (89.59%) in naming the posterior capsule. Its consistency at naming the anterior capsule was satisfactory (Kappa coefficient: 0.70), and it was also able to name the nucleus, cortex, and posterior capsule (0.56, 0.58, and 0.48, respectively).Conclusions: LOCS-UP could name pediatric cataracts by providing an unique digital encoding, which could reflect characteristics exactly for different local lens anomalies to all kinds of pediatric cataract patients.This method provides detailed and accurate information about patients' lenses.
Aim. Congenital corneal opacities (CCOs) are the major causes of early visual deprivation in infants. Balloon ultrasound biomicroscopy (UBM) examination is an effective method to diagnose CCO. However, whether it is suitable for children examination is still unknown. Methods. 26 Peters’ anomaly (PA) or Rieger’s anomaly (RA) infants with congenital corneal opacities (CCO) (40 eyes) underwent UBM examinations to study their imaging features. Results. Based on the results, they were divided into UBM Dx-Type I: Descemet’s membrane (DM) and endothelium have heterogenous or discontinuous echo accompanied with corneal stroma echo-enhanced or shallow anterior chamber. Type II: Type I alteration plus abnormal strand of iris extended to the border of the posterior corneal defect or iridocorneal adhesion. Type III: Type I or II combined with the abnormal hyperechoic lens, lens luxation, or keratolenticular adhesion. Type IV: echoes of the DM and the endothelium are continuous, corneal stroma echo is enhanced, and an abnormal strand of peripheral iris extends to the prominent Schwalbe line, accompanied by iris stroma or pupil heteromorphism and a shallow or flat anterior chamber. Conclusion. UBM not only could accurately evaluate the anterior segment abnormalities in CCO infants but also would be a step forward for the management of PA- and RA-associated CCO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.