Snake venom is a natural substance that contains numerous bioactive proteins and peptides, nearly all of which have been identified over the last several decades. In this study, we subjected snake venom to enzymatic hydrolysis to identify previously unreported bioactive peptides. The novel peptide ACH-11 with the sequence LTFPRIVFVLG was identified with both FXa inhibition and anti-platelet aggregation activities. ACH-11 inhibited the catalytic function of FXa towards its substrate S-2222 via a mixed model with a Ki value of 9.02 μM and inhibited platelet aggregation induced by ADP and U46619 in a dose-dependent manner. Furthermore, ACH-11 exhibited potent antithrombotic activity in vivo. It reduced paralysis and death in an acute pulmonary thrombosis model by 90% and attenuated thrombosis weight in an arterio-venous shunt thrombosis model by 57.91%, both at a dose of 3 mg/kg. Additionally, a tail cutting bleeding time assay revealed that ACH-11 did not prolong bleeding time in mice at a dose of 3 mg/kg. Together, our results reveal that ACH-11 is a novel antithrombotic peptide exhibiting both FXa inhibition and anti-platelet aggregation activities, with a low bleeding risk. We believe that it could be a candidate or lead compound for new antithrombotic drug development.
Aim: Psm2, one of the pyrrolidinoindoline alkaloids isolated from whole Selaginella moellendorffii plants, has shown a potent antiplatelet activity. In this study, we further evaluated the antiplatelet effects of Psm2, and elucidated the underlying mechanisms. Methods: Human platelet aggregation in vitro and rat platelet aggregation ex vivo were investigated. Agonist-induced platelet aggregation was measured using a light transmission aggregometer. The antithrombotic effects of Psm2 were evaluated in arteriovenous shunt thrombosis model in rats. To elucidate the mechanisms underlying the antiplatelet activity of Psm2, ELISAs, Western blotting and molecular docking were performed. The bleeding risk of Psm2 administration was assessed in a mouse tail cutting model, and the cytotoxicity of Psm2 was measured with MTT assay in EA.hy926 cells. Results: Psm2 dose-dependently inhibited human platelet aggregation induced by ADP, U4619, thrombin and collagen with IC 50 values of 0.64, 0.37, 0.35 and 0.87 mg/mL, respectively. Psm2 (1, 3, 10 mg/kg) administered to rats significantly inhibited platelet aggregation ex vivo induced by ADP. Psm2 (1, 3, 10 mg/mL, iv) administered to rats with the A-V shunt dose-dependently decreased the thrombus formation. Psm2 inhibited platelet adhesion to fibrinogen and collagen with IC 50 values of 84.5 and 96.5 mg/mL, respectively, but did not affect the binding of fibrinogen to GPIIb/IIIa. Furthermore, Psm2 inhibited AktSer473 phosphorylation, but did not affect MAPK signaling and Src kinase activation. Molecular docking showed that Psm2 bound to phosphatidylinositol 3-kinase β (PI3Kβ) with a binding free energy of -13.265 kcal/mol. In addition, Psm2 did not cause toxicity in EA.hy926 cells and produced only slight bleeding in a mouse tail cutting model. Conclusion: Psm2 inhibits platelet aggregation and thrombus formation by affecting PI3K/Akt signaling. Psm2 may be a lead compound or drug candidate that could be developed for the prevention or treatment of thrombotic diseases.
Centipede has been prescribed for the treatment of cardiovascular diseases in Asian countries for several hundred years. Previously, a new antiplatelet tripeptide SQL (H-Ser-Gln-Leu-OH) was isolated and characterized from centipede. In this study, we investigated its antithrombotic activities in vivo and underlying mechanism. It was found that SQL inhibited platelet aggregation induced by adenosine diphosphate, thrombin, epinephrine, and collagen and attenuated thrombus formation in both the ferric chloride-induced arterial thrombosis model and arteriovenous shunt thrombosis model in rats. It did not prolong the bleeding time in mice even at the dose of 10 mg/kg that showed potent antithrombosis effects. Molecular docking revealed that SQL binds PI3Kβ with the binding free energy of -24.341 kcal/mol, which is close to that of cocrystallized ligand (-24.220 kcal/mol). Additionally, SQL displayed inhibition on the late (180 seconds) but did not influence the early (60 seconds) Akt Ser473 phosphorylation in the immunoblot assay. These results suggest that SQL inhibits thrombus formation in vivo and that SQL inhibits PI3K-mediated signaling or even the PI3K itself in platelets. This study may help elucidate the mechanism for centipede treating cardiovascular diseases.
Cereal cyst nematodes are sedentary biotrophic endoparasites that secrete effector proteins into plant tissues to transit normal cells into specialized feeding sites and suppress plant defenses. To understand the function of nematode effectors in Heterodera avenae, here, we identified a calreticulin protein HaCRT1, which could suppress the cell death induced by Bax when expressed in Nicotiana benthamiana. HaCRT1 is synthetized in the subventral gland cells of pre-parasitic second-stage nematodes. Real-time PCR assays indicated that the expression of HaCRT1 was highest in parasitic second-stage juveniles. The expression of an HaCRT1-RFP fusion in N. benthamiana revealed that it was localized in the endoplasmic reticulum of the plant cell. The ability of H. avenae infecting plants was significantly reduced when HaCRT1 was knocked down by RNA interference in vitro. Arabidopsis thaliana plants expressing HaCRT1 were more susceptible than wild-type plants to Pseudomonas syringae. The induction of defense-related genes, PAD4, WRKY33, FRK1, and WRKY29, after treatment with flg22 was suppressed in HaCRT1-transgenic plants. Also, the ROS accumulation induced by flg22 was reduced in the HaCRT1-transgenic plants compared to wild-type plants. HaCRT1 overexpression increased the cytosolic Ca 2+ concentration in A. thaliana. These data suggested that HaCRT1 may contribute to the pathogenicity of H. avenae by suppressing host basal defense.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.