Nanoformulations offer the opportunity to overcome the shortcomings of drug molecules, such as low solubility, side effects, insufficient stability, etc., but in most of the current nanomedicines, nanocarriers as excipients do not directly participate in the therapy procedure. Accordingly, it is promising to develop the nanotherapeutics composed entirely of pharmaceutically active molecules. Tea polyphenols, especially epigallocatechin gallate (EGCG), are a kind of natural antioxidants with various biological and health beneficial effects and are extensively investigated as nutrients and anticancer drugs. Here, the sizetunable and highly active polyphenol nanoparticles were conveniently synthesized in water and could be massively produced with a simple facility. Compared to the previous strategies, either molecular assembly via oxidative coupling or combination with other biomacromolecules, the present preparation was conducted by the amino acid-triggered Mannish condensation reactions, thus permitting the flexible molecular design of various polyphenol nanoparticles by selecting different amino acids. This straightforward and ultrafast method actually opens up a novel means to make use of naturally reproducible polyphenols. Moreover, inheriting the salient properties of EGCG, these nanoparticles show strong antioxidation capacity, 10-fold higher than the extensively investigated polydopamine nanoparticles, and they are biosafe but have therapeutic effects, according to the in vitro and in vivo assessments of anticancer activity, which is promising for various biomedical purposes.
Purpose: Recently, high-resolution magnetic resonance imaging (HR-MRI) has been used to depict the wall characteristics of the intracranial arteries. The aim of this study was to explain the relationship between the remodeling patterns and acute ischemic stroke in patients with atherosclerotic middle cerebral artery (MCA) stenosis using HR-MRI.Materials and Methods: From August 2015 to May 2016, we prospectively screened 33 consecutive patients with unilateral MCA stenosis using time-to-flight MR angiography, including 15 patients with symptomatic MCA stenosis and 18 patients with asymptomatic MCA stenosis. Among them, 14 patients were diagnosed as positive remodeling (PR) and 19 as negative remodeling or non-remodeling. The cross-sectional images of the stenotic MCA wall on HR-MRI including T1WI, T2WI, and PDWI were compared between the symptomatic group and the asymptomatic group as well as the PR group and the non-PR group, based on the vessel area, lumen area, wall area, plaque area, degree of stenosis, remodeling index, and NIHSS score.Results: The symptomatic group had larger wall area (P = 0.040), plaque area (P<0.001), degree of stenosis (P = 0.038), remodeling index (P < 0.001), and NIHSS score (P = 0.003) as well as smaller lumen area (P = 0.001) than the asymptomatic group. In addition, more PR patients were observed in symptomatic group. The PR group had larger plaque area (P = 0.014) and NIHSS score (P = 0.037) than the non-PR group. Demographic and clinical characteristics between the symptomatic group and the asymptomatic group, the PR group and the non-PR group showed no statistical difference.Conclusion: The current study suggests that the HR-MRI has emerged as a promising tool to detect the characteristics of intracranial arteries wall and reveal the relationship between remodeling patterns and ischemic stroke. The PR is an unsafe remodeling way and is prone to cause acute ischemic stroke.
Various nanotechnologies have been extensively developed to prepare nanoparticles with different features for satisfying the requirements of diverse fields, but the current achievements are confined to different material systems for the limited acquisition with desirable properties. Here, we demonstrated a flexible strategy based on the broad selectivity of amines in the condensation of green tea polyphenol-EGCG (epigallocatechin gallate), formaldehyde, and amines for the rational design and preparation of versatile nanomaterials. With EGCG as the sole material system and amines (R−NH 2 ) of various functional R groups as the selectable modules, the modular assembly of polyphenolactivated condensation was straightforward and completed in one step, giving rise to different polyphenolic nanoparticles variable in surface chemistry (−amine, −aldehyde, and −carboxyl), shapes (sphere, dumbbell, walnut), internal structures (solid, hollow, and porous), stimuli responsiveness (-s-s-), and fluorescence. The flexibility of the polyphenolic condensation for versatile nanoparticles was further demonstrated by the incorporation of amino-containing anticancer or antibacterial drugs into polyphenolic nanoparticles as nanodrugs. The present study totally involved the use of 13 different amines to synthesize 18 different nanoparticles, not only convincingly specifying the enormous value of the polyphenolic condensation as platform for modular assembly of versatile nanoparticles but also revolutionizing the current strategies and methodologies for encapsulated applications of tea polyphenols.
Molecular assembly of green tea polyphenols and keratins into size-controlled, colloidally stable and functional nanoparticles for enhanced cancer therapy was achieved.
Solar-powered atmospheric water harvest (SAWH) with metal–organic frameworks (MOFs) represents one of the most sustainable, energy-efficient, and low-cost ways to alleviate water shortage stress in arid regions. However, the daily water productivity of previously developed SAWH devices remains low as they are merely allowed to be operated in batch mode and complete one water harvest cycle every day. This inevitably makes it rather challenging to deploy MOF-based SAWH for water production at scales. To overcome this challenge, MXene Ti3C2-incorporated UiO-66-NH2 (TUN) cylindrical monoliths (13 mm diameter, 4 mm thickness) with vertically aligned porous networks have been prepared and exhibited greatly enhanced solar heating capacity and atmospheric water adsorption/desorption kinetics. Using TUN monoliths as atmospheric water adsorbents, a novel SAWH device containing a flippable adsorbent stage with dual TUN monolith layers attached on both sides has been fabricated. Such a novel design enables the prototype to produce water in a continuous mode under sunlight irradiation, delivering 57.8 mLH2O kgMOF –1 h–1 of water productivity in a simulated indoor arid environment (20% relative humidity, 298 K). This is the first exploration in continuous water production with MOF-based SAWH, demonstrating a promising way to achieve scalable and low-cost SAWH in arid areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.