High-speed water entry is a transient hydrodynamic process that is accompanied by strongly compressible flow, free surface splash, cavity evolution and other nonlinear hydrodynamic phenomena. To address these problems, a novel fluid–structure interaction (FSI) scheme based on the immersed boundary method is proposed which is suitable for strongly compressible multiphase flows. In this scheme, considering the multiphase interfaces at the immersed boundary, an improved immersed boundary method for effectively suppressing the non-physical force oscillation is proposed. Additionally, a quaternion-based six degrees of freedom motion system is used to describe rigid body motion, and the multiphase flow Eulerian finite element method is applied as the fluid solver. Using analytical solutions, experimental data and literature data, the accuracy and robustness of the FSI scheme are validated. Finally, the high-speed water entry of the slender body with different noses is investigated, and the hydrodynamic loads including the axial and normal drag forces and the bending moment are extensively discussed. The hydrodynamic load and motion trajectory are determined by the nose configuration. The tail slamming phenomenon is the primary focus, and it is revealed that its formation is primarily related to the pitch moment formed at the stage of crossing the free surface. Tail slamming also causes violent impact loads, especially bending moments, which may cause slender projectiles to break off. Finally, to combine the features of the flat and hemispherical noses, the water entry of the projectile with a truncated hemispherical nose is simulated and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.