Cyclin-dependent kinases (CDKs) are serine/threonine kinases whose catalytic activities are regulated by interactions with cyclins and CDK inhibitors (CKIs). CDKs are key regulatory enzymes involved in cell proliferation through regulating cell-cycle checkpoints and transcriptional events in response to extracellular and intracellular signals. Not surprisingly, the dysregulation of CDKs is a hallmark of cancers, and inhibition of specific members is considered an attractive target in cancer therapy. In breast cancer (BC), dual CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib, combined with other agents, were approved by the Food and Drug Administration (FDA) recently for the treatment of hormone receptor positive (HR+) advanced or metastatic breast cancer (A/MBC), as well as other sub-types of breast cancer. Furthermore, ongoing studies identified more selective CDK inhibitors as promising clinical targets. In this review, we focus on the roles of CDKs in driving cell-cycle progression, cell-cycle checkpoints, and transcriptional regulation, a highlight of dysregulated CDK activation in BC. We also discuss the most relevant CDK inhibitors currently in clinical BC trials, with special emphasis on CDK4/6 inhibitors used for the treatment of estrogen receptor-positive (ER+)/human epidermal growth factor 2-negative (HER2−) M/ABC patients, as well as more emerging precise therapeutic strategies, such as combination therapies and microRNA (miRNA) therapy.
Oncogenic activation of the Wnt signaling pathway is common in cancers, but mutation of b-catenin in ovarian cancer is rare. In addition to genetic events, epigenetic modification of secreted frizzled-related protein (SFRP) family has been shown to be important in regulating Wnt signaling. Although high degree of homology is observed in the same family, different SFRPs may have opposing effects on the same process. We reported recently that a Wnt antagonist, SFRP5, is downregulated frequently through promoter hypermethylation and that this hypermethylation is associated with overall survival in ovarian cancer. The aim of this study was to analyze the function of SFRP5 in ovarian cancer. Functional assays including measuring cell proliferation, invasion, colony formation and xenograft were performed using ovarian cancer cell lines with overexpression of SFRP5 or a short hairpin RNA silencing. The methylation status of SFRP5 in relation to cisplatin resistance in ovarian cancer patients was analyzed. Restoration of the expression of SFRP5 attenuated Wnt signaling in ovarian cancer cells and suppressed cancer cell growth, invasion of cells and tumorigenicity in mice. These effects were independent of the canonical pathway. The expression of SFRP5 inhibited epithelial-mesenchymal transition (EMT). The restoration of SFRP5 downregulated AKT2 and sensitized ovarian cancer cells to chemotherapy. These effects are consistent with the poor response to platinumbased chemotherapy in patients with methylation of SFRP5. Our data suggested that epigenetic silencing of SFRP5 leads to oncogenic activation of the Wnt pathway and contributes to ovarian cancer progression and chemoresistance through the TWIST-mediated EMT and AKT2 signaling.Ovarian cancer is the second most common gynecological malignancy and the fifth leading cause of cancer-related death among women in the United States; nearly 60% of women with ovarian cancer eventually succumb to the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.