Adverse effects of five typical environmental estrogens, namely estrone (E1), 17β-estradiol (E2), 4-n-octylphenol (4-n-OP), 4-n-nonylphenol (4-n-NP) and bisphenol A (BPA) on adult male goldfish (Carassius auratus) were investigated both individually and in binary mixtures, using serum vitellogenin (VTG) induction and gonadosomatic index (GSI) as the endpoints. Doses of individual and binary mixtures of estrogens were chosen at broad ranges. Five individual estrogens induced common dose-dependent increases of serum VTG in the experimental fish when injection doses of the estrogen series were comparatively low. The levels of VTG induction in fish descended after peaked at a certain dose of the individual estrogen. Significant GSI decreases were observed in fish treated by all dose series of E1 and E2, and comparatively high doses of 4-n-OP, 4-n-NP and BPA when compared with that of solvent control (SC). Effects of binary mixtures of the five typical estrogens on VTG induction in male goldfish were in additive manner at low-effect doses, but divergences occurred at high dose levels, with the predicted effects by additive manner exceeding those were observed. All of GSI of fish treated by the binary mixtures were about or lower than 10(-3)%. Serious atrophy of gonads was observed in all the mixture treatment groups when compared with that of SC. These findings highlight the potential reproductive risk of fish resulted from existing mixtures of hormones in the aquatic environment, and they have important implications for environmental estrogen hazard assessment.
Estrogenic activities of river water from four representative cross-sections of the Yellow River (Zhengzhou section) and their effects on reproduction and development of fish were assessed. MVLN assay showed estradiol equivalents of river water from Yiluohe, Xinmanghe, Qinhe and Huayuankou cross-sections were 1.09 ± 0.11, 0.72 ± 0.01, 1.19 ± 0.19 and 0.80 ± 0.04 ng/L, respectively. Significant vitellogenin (VTG) inductions were observed in adult male Japanese madaka (Oryzias latipes) after 30 days of exposure to river water from Yiluohe and Qinhe cross-sections (p < 0.05). Hepatic-somatic index was significantly elevated in fish exposed to water from Qinhe cross-section (p < 0.05). A significant delay in time to hatching was observed in embryos treated by water from Xinmanghe cross-section (p < 0.05). Significant lower survivals were observed in fish treated by water from Yiluohe and Xinmanghe cross-sections after a full life cycle exposure (p < 0.05). Exposure of water from Yiluohe and Qinhe cross-sections induced significantly elevated VTG levels in the first sexually mature male fish (p < 0.05). Both the in vitro and in vivo bioassay demonstrate endocrine disrupting chemicals exist in the Yellow River (Zhengzhou section) and fish in Yiluohe and Qinhe cross-sections can be at a risk of reproductive and developmental impairment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.