Six new silicon phases with direct band gaps were found through silicon atomic substitution of carbon in the known carbon structures via high-throughput calculations.
Based on structure prediction method, the machine learning method is used instead of the density function theory (DFT) method to predict the material properties, thereby accelerating the material search process. In this paper, we established a data set of carbon materials by high-throughput calculation with available carbon structures obtained from the Samara Carbon Allotrope Database. We then trained an ML model that specifically predicts the elastic modulus (bulk modulus, shear modulus, and the Young's modulus) and confirmed that the accuracy is better than that of AFLOW-ML in predicting the elastic modulus of a carbon allotrope. We further combined our ML model with the CALYPSO code to search for new carbon structures with a high Young's modulus. A new carbon allotrope not included in the Samara Carbon Allotrope Database, named Cmcm-C24, which exhibits a hardness greater than 80 GPa, was firstly revealed. The Cmcm-C24 phase was identified as a semiconductor with a direct bandgap. The structural stability, elastic modulus, and electronic properties of the new carbon allotrope were systematically studied, and the obtained results demonstrate the feasibility of ML methods accelerating the material search process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.