Neonicotinoid insecticide pollution in soil and water poses serious environmental risks. Microbial biodegradation is an important neonicotinoid insecticide degradation pathway in the environment. In this study, 70.0% of the acetamiprid in a 200 mg/L solution was degraded by actinomycetes Streptomyces canus CGMCC 13662 (isolated from soil) in 48 h, and the acetamiprid degradation half-life was 27.7 h. Acetamiprid was degraded to IM-1-2 ((E)-1-(1-(((6chloropyridin-3-yl)methyl)(methyl) amino)ethylidene)urea) through hydrolysis of the cyanoimine moiety. Gene cloning and overexpression indicated that a novel nitrile hydratase with three unusual subunits (AnhD, AnhE, and AnhA) without accessory protein mediated IM-1-2 formation. The purified nitrile hydratase responsible for degrading acetamiprid had a K m of 5.85 mmol/L and a V max of 15.99 U/mg. A homology model suggested that AnhD-Glu56 and AnhE-His21 play important roles in the catalytic efficiency of the nitrile hydratase. S. canus CGMCC 13662 could be used to remediate environments contaminated with acetamiprid.
is a metabolically diverse genus of plant growth-promoting rhizobacteria (PGPR) that engages in mutually beneficial interactions between plants and microbes. Unlike most PGPR, cannot synthesize the phytohormone indole-3-acetic acid (IAA) via tryptophan. However, we found that strain CGMCC 4969 can produce IAA using indole-3-acetonitrile (IAN) as the precursor. Thus, in the present study, the IAA synthesis mechanism of CGMCC 4969 was investigated. CGMCC 4969 metabolized IAN to IAA through both a nitrilase-dependent pathway and a nitrile hydratase (NHase) and amidase-dependent pathway. Cobalt enhanced the metabolic flux via the NHase/amidase, by which IAN was rapidly converted to indole-3-acetamide (IAM) and in turn to IAA. IAN stimulated metabolic flux via the nitrilase, by which IAN was rapidly converted to IAA. Subsequently, the IAA was degraded. CGMCC 4969 can use IAN as the sole carbon and nitrogen source for growth. Genome sequencing confirmed the IAA synthesis pathways. Gene cloning and overexpression in indicated that NitA has nitrilase activity and IamA has amidase activity to respectively transform IAN and IAM to IAA. Interestingly, NitA showed a close genetic relationship with the nitrilase of the phytopathogen Quantitative PCR analysis indicated that the NHase/amidase system is constitutively expressed, whereas the nitrilase is inducible. The present study helps our understanding of the versatile functions of nitrile-converting enzymes that mediate IAA synthesis and the interactions between plants and these bacteria. We demonstrated that CGMCC 4969 has two enzymatic systems-nitrilase and nitrile hydratase/amidase-that convert indole-3-acetonitrile (IAN) to the important plant hormone indole-3-acetic acid (IAA). The two IAA synthesis systems have very different regulatory mechanisms, affecting the IAA synthesis rate and duration. The nitrilase was induced by IAN, which was rapidly converted to IAA; subsequently, IAA was rapidly consumed for cell growth. The nitrile hydratase (NHase) and amidase system was constitutively expressed and slowly but continuously synthesized IAA. In addition to synthesizing IAA from IAN, CGMCC 4969 has a rapid IAA degradation system, which would be helpful for a host plant to eliminate redundant IAA. This study indicates that the plant growth-promoting rhizobacterium CGMCC 4969 has the potential to be used by host plants to regulate the IAA level.
A newly isolated Pseudomonas fragi P121 strain in a soil sample taken from the Arctic Circle is able to produce trehalose. The P121 strain was able to grow at temperatures ranging from 4 to 25 °C, had an optimum pH of 6.5, and an optimum salt concentration of 2 %. The P121 strain had a survival rate of 29.1 % after being repeatedly frozen and thawed five times, and a survival rate of 78.9 % when placed in physiological saline for 15 days at 20 °C after cold shock, which is far higher than the type strain Pseudomonas fragi ATCC 4973. The P121 strain could produce 2.89 g/L trehalose, which was 18.6 % of dry cell weight within 52 h in a 25 L fermention tank using the malt extract prepared from barley as medium at 15 °C, while only 11.8 % of dry cell weight at 20 °C. These results suggested that cold stress promoted the strain producing trehalose. It is the first reported cold-tolerant bacterium that produces trehalose, which may protect cells against the cold environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.