Ubiquinone-0, menaquinone-0, and 2,3,5-trimethyl-1,4-benzoquinone were site-specifically bound to free cysteine of proteins (yeast iso-1 cytochrome c as a model protein) through thioether bond formation. Model thioether quinone conjugates showed unexpected reactivity to cysteine of proteins as their parent quinones by thiol addition-elimination reaction. Cyclic voltammetry studies of the model compounds showed only minor differences in their redox potentials as compared to their parent quinones. Thioether ligation provides a general, simple, and fast method to construct model quinone protein systems. In addition, these studies also contribute to the understanding of biological activities, toxicity, and anti-cancer mechanism of quinones and thioether quinone adducts.
On the basis of rational design principles, template-assisted four-helix-bundle proteins that include two histidines for coordinative binding of a heme were synthesized. Spectroscopic and thermodynamic characterization of the proteins in solution reveals the expected bis-histidine coordinated heme configuration. The proteins possess different binding domains on the top surfaces of the bundles to allow for electrostatic, covalent, and hydrophobic binding to metal electrodes. Electrostatic immobilization was achieved for proteins with lysine-rich binding domains (MOP-P) that adsorb to electrodes covered by self-assembled monolayers of mercaptopropionic acid, whereas cysteamine-based monolayers were employed for covalent attachment of proteins with cysteine residues in the binding domain (MOP-C). Immobilized proteins were studied by surface-enhanced resonance Raman (SERR) spectroscopy and electrochemical methods. For all proteins, immobilization causes a decrease in protein stability and a loosening of the helix packing, as reflected by a partial dissociation of a histidine ligand in the ferrous state and very low redox potentials. For the covalently attached MOP-C, the overall interfacial redox process involves the coupling of electron transfer and heme ligand dissociation, which was analyzed by time-resolved SERR spectroscopy. Electron transfer was found to be significantly slower for the mono-histidine-coordinated than for the bis-histidine-coordinated heme. For the latter, the formal heterogeneous electron-transfer rate constant of 13 s(-1) is similar to those reported for natural heme proteins with comparable electron-transfer distances, which indicates that covalently bound synthetic heme proteins provide efficient electronic communication with a metal electrode as a prerequisite for potential biotechnological applications.
Biofilm formation on surfaces is an important research topic in ship tribology and medical implants. In this study, dopamine and two types of synthetic peptides were designed and attached to 304 stainless steel surfaces, aiming to inhibit the formation of biofilms. A combinatory surface modification procedure was applied in which dopamine was used as a coupling agent, allowing a strong binding ability with the two peptides. X-ray photoelectron spectroscopy (XPS), elemental analysis, contact angle measurement and surface roughness test were used to evaluate the efficiency of the peptide modification. An antibiofilm assay against Staphylococcus aureus was conducted to validate the antibiofilm capacity of the peptide-modified stainless steel samples. XPS analysis confirmed that the optimal dopamine concentration was 40 µg ml−1 in the coupling reaction. Element analysis showed that dopamine and the peptides had bound to the steel surfaces. The robustness assay of the modified surface demonstrated that most peptide molecules had bound on the surface of the stainless steel firmly. The contact angle of the modified surfaces was significantly changed. Modified steel samples exhibited improved antibiofilm properties in comparison to untreated and dopamine-only counterpart, with the peptide 1 modification displaying the best antibiofilm effect. The modified surfaces showed antibacterial capacity. The antibiofilm capacity of the modified surfaces was also surface topography sensitive. The steel sample surfaces polished with 600# sandpaper exhibited stronger antibiofilm capacity than those polished with other types of sandpapers after peptide modification. These findings present valuable information for future antifouling material research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.